Comparative Study on the Effect of Aluminium Trihydrate and Carbon Nanofillers on Thermal Properties of Glass Fiber Reinforced Epoxy Composites

Jump To References Section

Authors

  • Department of Electrical and Electronics Engineering, Siddaganga Institute of Technology, BH. Road, Tumakuru, Karnataka-572 103 ,IN
  • Department of Electrical and Electronics Engineering, Siddaganga Institute of Technology, BH. Road, Tumakuru, Karnataka-572 103 ,IN
  • The Energy and Resources Institute, Southern Regional Centre, 4th Main, 2nd Cross, Bangalore, Karnataka ,IN
  • Department of Electrical and Electronics Engineering, Siddaganga Institute of Technology, BH. Road, Tumakuru, Karnataka-572 103 ,IN

DOI:

https://doi.org/10.18311/jmmf/2022/32011

Keywords:

Differential Scanning Calorimetry, Thermal Kinetics, GFRP Composites.

Abstract

High performance glass fiber reinforced epoxy composites are in greater demand in several industrial applications, from civil structures to aviation industry. The epoxy has highly cross-linked structure and is found to be high performance polymer. Further, carbon nanofillers such as multi-walled carbon nanotubes (MWCNT), graphene nanoplatelets (GNP) and thermally stable microfiller aluminium trihydrate (ATH) are being used to improve the thermal properties. GNP and MWCNT posses high aspect ratio and specific surface area contributing to improvement in thermal properties of composites. In spite of this, there are difficulties connected with nanofiller addition, such as dispersion and interaction. The fabricated nanocomposites are based on ECR glass fiber and epoxy resin by adding GNP, MWCNT and ATH fillers using pultrusion process assisted by ultrasonication. For the purpose of comparison, composites containing only MWCNT, GNP and ATH were also tested. The XRD and SEM were used to study the fillers dispersion and interaction. The thermogravemetric analysis(TGA) was carried out to determine the thermal stability of composites. From the thermal analysis result, it is found that the epoxy-MWCNT-GNP-ATH composite has enhanced thermal stability due to the addition of ATH micro filler.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Downloads

Published

2022-12-08

How to Cite

Madhu, B. M., ., R., Sailaja, R. R. N., & Sundara Rajan, J. (2022). Comparative Study on the Effect of Aluminium Trihydrate and Carbon Nanofillers on Thermal Properties of Glass Fiber Reinforced Epoxy Composites. Journal of Mines, Metals and Fuels, 70(8A), 63–69. https://doi.org/10.18311/jmmf/2022/32011

Issue

Section

Articles

 

References

D. K. Rajak, D. D. Pagar, P. L. Menezes, and E. Linul, “Fiber-reinforced polymer composites: Manufacturing, properties, and applications,” Polymers (Basel)., vol.11, no.10, 2019, doi: 10.3390/polym11101667. DOI: https://doi.org/10.3390/polym11101667

M. M. Zagho, E. A. Hussein, and A. A. Elzatahry, “Recent overviews in functional polymer composites for biomedical applications,” Polymers (Basel)., vol. 10, no. 7, 2018, doi: 10.3390/polym10070739. DOI: https://doi.org/10.3390/polym10070739

M. Hesami, R. Bagheri, and M. Masoomi, “Combination effects of carbon nanotubes, MMT and phosphorus flame retardant on fire and thermal resistance of fiber-reinforced epoxy composites,” Iran. Polym. J. (English Ed., vol. 23, no. 6, pp. 469–476, 2014, doi: 10.1007/s13726-014-0241-z. DOI: https://doi.org/10.1007/s13726-014-0241-z

K. P. Matabola, A. R. De Vries, F. S. Moolman, and A. S. Luyt, “Single polymer composites: A review,” J. Mater. Sci., vol. 44, no. 23, pp. 6213–6222, 2009, doi: 10.1007/s10853-009-3792-1. DOI: https://doi.org/10.1007/s10853-009-3792-1

K. Y. Chan, B. Jia, H. Lin, N. Hameed, J.-H. Lee, and K.-T. Lau, “A critical review on multifunctional composites as structural capacitors for energy storage,” Compos. Struct., vol. 188, pp. 126–142, 2018, doi: https://doi.org/10.1016/j.compstruct.2017.12.072. DOI: https://doi.org/10.1016/j.compstruct.2017.12.072

S. Das, S. Sharma, T. Yokozeki, and S. Dhakate, “Conductive layer-based multifunctional structural composites for electromagnetic interference shielding,” Compos. Struct., vol. 261, p. 113293, 2021, doi: https://doi.org/10.1016/j.compstruct.2020.113293. DOI: https://doi.org/10.1016/j.compstruct.2020.113293

T. J. Adam et al., “Multifunctional composites for future energy storage in aerospace structures,” Energies, vol. 11, no. 2, 2018, doi: 10.3390/en11020335. DOI: https://doi.org/10.3390/en11020335

M. Rafiee, F. Nitzsche, J. Laliberte, S. Hind, F. Robitaille, and M. R. Labrosse, “Thermal properties of doubly reinforced fiberglass/epoxy composites with graphene nanoplatelets, graphene oxide and reduced-graphene oxide,” Compos. Part B Eng., vol. 164, pp. 1–9, 2019, doi: 10.1016/j.compositesb.2018.11.051. DOI: https://doi.org/10.1016/j.compositesb.2018.11.051

S. Kopsidas and G. B. Olowojoba, “Multifunctional epoxy composites modified with a graphene nanoplatelet/carbon nanotube hybrid,” J. Appl. Polym. Sci., vol. 138, no. 35, pp. 1–19, 2021, doi: 10.1002/app.50890. DOI: https://doi.org/10.1002/app.50890

L. Schlagenhauf, Y. Y. Kuo, Y. K. Bahk, F. Nüesch, and J. Wang, “Decomposition and particle release of a carbon nanotube/epoxy nanocomposite at elevated temperatures,” J. Nanoparticle Res., vol. 17, no. 11, 2015, doi: 10.1007/s11051-015-3245-5. DOI: https://doi.org/10.1007/s11051-015-3245-5

Y. M. Yun et al., “Pyrolysis characteristics of GFRP (Glass Fiber Reinforced Plastic) under non-isothermal conditions,” Fuel, vol. 137, pp. 321–327, 2014, doi: 10.1016/j.fuel.2014.08.001. DOI: https://doi.org/10.1016/j.fuel.2014.08.001

J. W. Zha, T. X. Zhu, Y. H. Wu, S. J. Wang, R. K. Y. Li, and Z. M. Dang, “Tuning of thermal and dielectric properties for epoxy composites filled with electrospun alumina fibers and graphene nanoplatelets through hybridization,” J. Mater. Chem. C, vol. 3, no. 27, pp. 7195–7202, 2015, doi: 10.1039/c5tc01552a. DOI: https://doi.org/10.1039/C5TC01552A

S. Mondal and D. Khastgir, “Elastomer reinforcement by graphene nanoplatelets and synergistic improvements of electrical and mechanical properties of composites by hybrid nano fillers of graphene-carbon black & graphene-MWCNT,” Compos. Part A Appl. Sci. Manuf., vol. 102, pp. 154–165, 2017, doi: 10.1016/j.compositesa.2017.08.003. DOI: https://doi.org/10.1016/j.compositesa.2017.08.003

L. Yue, G. Pircheraghi, S. A. Monemian, and I. Manas-Zloczower, “Epoxy composites with carbon nanotubes and graphene nanoplatelets - Dispersion and synergy effects,” Carbon N. Y., vol. 78, pp. 268–278, 2014, doi: 10.1016/j.carbon.2014.07.003. DOI: https://doi.org/10.1016/j.carbon.2014.07.003

Y. Perets, L. Aleksandrovych, M. Melnychenko, O. Lazarenko, L. Vovchenko, and L. Matzui, “The Electrical Properties of Hybrid Composites Based on Multiwall Carbon Nanotubes with Graphite Nanoplatelets,” Nanoscale Res. Lett., vol. 12, 2017, doi: 10.1186/s11671-017-2168-8. DOI: https://doi.org/10.1186/s11671-017-2168-8

L. C. Tang et al., “The effect of graphene dispersion on the mechanical properties of graphene/epoxy composites,” Carbon N. Y., vol. 60, pp. 16–27, 2013, doi: 10.1016/j.carbon.2013.03.050. DOI: https://doi.org/10.1016/j.carbon.2013.03.050

G. Mittal, V. Dhand, K. Y. Rhee, S. J. Park, and W. R. Lee, “A review on carbon nanotubes and graphene as fillers in reinforced polymer nanocomposites,” J. Ind. Eng. Chem., vol. 21, pp. 11–25, 2015, doi: 10.1016/j.jiec.2014.03.022. DOI: https://doi.org/10.1016/j.jiec.2014.03.022

M. R. Mansor, S. H. S. M. Fadzullah, N. A. B. Masripan, G. Omar, and M. Z. Akop, Comparison Between Functionalized Graphene and Carbon Nanotubes. Elsevier Inc., 2019. DOI: https://doi.org/10.1016/B978-0-12-814548-7.00009-X

M. Trihotri, U. K. Dwivedi, and M. M. Malik, “Study of low weight percentage filler on dielectric properties of MWCNT-epoxy nanocomposites,” vol. 6, no. 3, pp. 1–9, 2016, doi: 10.1142/S2010135X16500247. DOI: https://doi.org/10.1142/S2010135X16500247

C. C. Teng et al., “Preparation and characterization of nano-inorganic materials coated multi-walled carbon nanotubes/epoxy composites for thermal interface materials,” IMPACT Conf. 2009 Int. 3D IC Conf. - Proc., pp. 469–472, 2009, doi: 10.1109/IMPACT.2009.5382220. DOI: https://doi.org/10.1109/IMPACT.2009.5382220

K. M. F. Shahil and A. A. Balandin, “Thermal properties of graphene and multilayer graphene: Applications in thermal interface materials,” Solid State Commun., vol. 152, no. 15, pp. 1331–1340, 2012, doi: 10.1016/j.ssc.2012.04.034. DOI: https://doi.org/10.1016/j.ssc.2012.04.034

N. Platelets, Y. Jen, and J. Huang, “Synergistic Effect on the Thermomechanical and Electrical Properties of Epoxy Composites with the Enhancement of Carbon Nanotubes and Graphene,” doi: 10.3390/ma12020255. DOI: https://doi.org/10.3390/ma12020255

S. Gantayat, D. Rout, and S. K. Swain, “Carbon Nanomaterial–Reinforced Epoxy Composites: A Review,” Polym. - Plast. Technol. Eng., vol. 57, no.1, pp. 1–16, 2018, doi: 10.1080/03602559.2017.1298802. DOI: https://doi.org/10.1080/03602559.2017.1298802

R. Atif, I. Shyha, and F. Inam, “Mechanical, thermal, and electrical properties of grapheneepoxy nanocomposites-A review,” Polymers (Basel)., vol. 8, no. 8, 2016, doi: 10.3390/polym8080281. DOI: https://doi.org/10.3390/polym8080281

I. Kranauskaitë et al., “Enhancing electrical conductivity of multiwalled carbon nanotube/epoxy composites by graphene nanoplatelets,” Lith. J. Phys., vol. 57, no. 4, pp. 232–242, 2017, doi: 10.3952/physics.v57i4.3602. DOI: https://doi.org/10.3952/physics.v57i4.3602

M. R. Ayatollahi, M. M. Shokrieh, S. Shadlou, A. R. Kefayati, and M. Chitsazzadeh, “Mechanical and Electrical Properties of Epoxy/Multi-walled Carbon Nanotube/Nanoclay Nanocomposites,” vol. c, no. 10, pp. 835–843, 2011.

A. Mani, P. Tambe, and A. Rahaman, “Flexural properties of multiscale nanocomposites containing multiwalled carbon nanotubes coated glass fabric in epoxy/graphene matrix,” Compos. Interfaces, vol. 26, no. 11, pp. 935–962, 2019, doi: 10.1080/09276440.2019.1569396. DOI: https://doi.org/10.1080/09276440.2019.1569396

S. Gupta and A. Rahaman, “Effect of Carbon Nanotube on Thermo-Mechanical Properties of Glass Fiber / Epoxy Laminated Nanocomposites,” vol. 5, no. 2, pp. 1–5, 2015.

A. Moosa, A. Ramazani, A. A. Moosa, and M. N. Ibrahim, “Mechanical and Electrical Properties of Graphene Nanoplates and Carbon-Nanotubes Hybrid Epoxy Nanocomposites,” Am. J. Mater. Sci., vol. 6, no. 6, pp. 157–165, 2016, doi: 10.5923/j.materials.20160606.03.

A. Krivda et al., “Characterization of epoxy microcomposite and nanocomposite materials for power engineering applications,” IEEE Electr. Insul. Mag., vol. 28, no. 2, pp. 38–51, 2012, doi: 10.1109/MEI.2012.6159180. DOI: https://doi.org/10.1109/MEI.2012.6159180

G. Iyer, R. Gorur, R. Richert, A. Krivda, and L. Schmidt, “Dielectric Properties of Epoxy Based Nanocomposites for High Voltage Insulation,” IEEE Trans. Dielectr. Electr. Insul., vol. 18, no. 3, pp. 659–666, 2011, doi: 10.1109/TDEI.2011.5931050. DOI: https://doi.org/10.1109/TDEI.2011.5931050

I. Pleºa, P. V. Noþingher, S. Schlögl, C. Sumereder, and M. Muhr, “Properties of polymer composites used in high-voltage applications,” Polymers (Basel)., vol. 8, no. 5, 2016, doi: 10.3390/polym8050173. DOI: https://doi.org/10.3390/polym8050173

N. R. Paluvai, S. Mohanty, and S. K. Nayak, “Synthesis and Modifications of Epoxy Resins and Their Composites: A Review,” Polym. - Plast. Technol. Eng., vol. 53, no. 16, pp. 1723–1758, 2014, doi: 10.1080/03602559.2014.919658. DOI: https://doi.org/10.1080/03602559.2014.919658

A. Leszczyñska, J. Njuguna, K. Pielichowski, and J. R. Banerjee, “Polymer/montmorillonite nanocomposites with improved thermal properties. Part I. Factors influencing thermal stability and mechanisms of thermal stability improvement,” Thermochim. Acta, vol. 453, no. 2, pp. 75–96, 2007, doi: 10.1016/j.tca.2006.11.002. DOI: https://doi.org/10.1016/j.tca.2006.11.002