Metallurgical Properties of CeLa Substituted Bio-Glass Ceramics

Jump To References Section

Authors

  • Department of Mechanical Engineering, Swami Vivekananda University, Barrackpore, Kolkata - 700121 ,IN
  • Department of Mechanical Engineering, Swami Vivekananda University, Barrackpore, Kolkata - 700121 ,IN
  • Department of Mechanical Engineering, Swami Vivekananda University, Barrackpore, Kolkata - 700121 ,IN

DOI:

https://doi.org/10.18311/jmmf/2023/35871

Abstract

To set up a bioglass of general structure given in Table 1. These five samples were ready in a crucible made up of alumina through a melting temperature of 1400±10 oC and normalized it. The glass powder pallet was made by the press and submerged in Simulated Body Liquid (SBF) in various time spans, and they’re not entirely settled by FTIR examination. The morphology of the surface resolved to utilize a Checking by (SEM). pH estimation of bioactive glass was done by pH meter and mechanical properties like Microhardness and Flexural strength were determined and found that it increases with increasing the concentration of REEs. The developed CeO2 and La2O3 incorporated bioactive glasses were also found to enhance mechanical properties. Thus, the glasses with CeO2 and La2O3 can be suitable candidates for bone implant application.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Downloads

Published

2023-12-20

How to Cite

Mondal, P., Md. Ershad, & Kumar, R. (2023). Metallurgical Properties of CeLa Substituted Bio-Glass Ceramics. Journal of Mines, Metals and Fuels, 71(10), 1639–1644. https://doi.org/10.18311/jmmf/2023/35871

 

References

Hench LL. Bio-ceramics. J Am Ceram Soc. 1998; 74(7):1487- 510. https://doi.org/10.1111/j.1151-2916.1991.tb07132. xt DOI: https://doi.org/10.1111/j.1151-2916.1991.tb07132.x

Gerhardt LC, Boccaccini AR. Bioactive Glass and Glass-Ceramic Scaffolds for Bone Tissue Engineering. Materials. 2010; 3:3867-910. https://doi.org/10.3390/ ma3073867 PMid:28883315 PMCid:PMC5445790t DOI: https://doi.org/10.3390/ma3073867

Ylanen HO. Bioactive glasses materials properties and applications. Woodhead Publishing Limited. Biomaterials. 2011; 6:1-288.t

Heness G, Ben-Nissan B. Innovative bio-ceramics. Mater Forum. 2004; 27:104-14. https://doi. org/10.1142/9789812702692_0024t

Ershad M, Vyas VK, Prasad S, Ali A, Pyare R. Effect of Sm 2O3 substitution on mechanical and biological properties of 45S5 bioactive glass. J Aust Ceram Soc. 2018; 54(4):621-30. https://doi.org/10.1007/s41779-018- 0190-7t DOI: https://doi.org/10.1007/s41779-018-0190-7

Fredholm YC, Karpukhina N, Law RV, Hill RG. Strontium-containing bioactive glasses: Glass structure and physical properties. J Non-Cryst Solids. 2010; 356:2546-51. https://doi.org/10.1016/j. jnoncrysol.2010.06.078t DOI: https://doi.org/10.1016/j.jnoncrysol.2010.06.078

Balamurugan A, Rebelo AH, Lemos AF, Rocha JH, Ventura JM, Ferreira JM. Suitability evaluation of sol– gel derived Si-substituted hydroxyapatite for dental and maxillofacial applications through in vitro osteoblasts response. Dent Mater. 2008; 24:1374-80. https://doi. org/10.1016/j.dental.2008.02.017 PMid:18417203t DOI: https://doi.org/10.1016/j.dental.2008.02.017

Oki A, Parveen B, Hossain S, Adeniji S, Donahue H. Preparation and in vitro bioactivity of zinc containing sol-gel–derived bioglass materials. J Biomed Mater Res A. 2004; 69:216-21. https://doi.org/10.1002/jbm.a.20070 PMid:15057994t DOI: https://doi.org/10.1002/jbm.a.20070

Saboori A, Sheikhi M, Moztarzadeh F, Rabiee M, Hesaraki S, Tahriri M. Sol–gel preparation, characterisation and in vitro bioactivity of Mg containing bioactive glass. Adv Appl Ceram. 2009; 108:155-61. https://doi. org/10.1179/174367608X324054t DOI: https://doi.org/10.1179/174367608X324054

Du W, Kuraoka K, Akai T, Yazawa T. Study of Al2O3 effect on structural change and phase separation in Na2OB 2O3-SiO2 glass by NMR. J Mater Sci. 2000; 35:4865-71. https://doi.org/10.1023/A:1004845817600 t DOI: https://doi.org/10.1023/A:1004853603298

Yun YH, Bray PJ. Nuclear magnetic resonance studies of the glasses in the system Na2O-B2O3-SiO2. J Non Cryst Solids. 1978. Available from: https://linkinghub.elsevier.com/retrieve/pii/0022309378900200. https://doi. org/10.1016/0022-3093(78)90020-0t DOI: https://doi.org/10.1016/0022-3093(78)90020-0

Dell WJ, Bray PJ, Xiao SZ. 11B NMR studies and structural modeling of Na2O-B2O3-SiO2glasses of high soda content. J Non Cryst Solids. 1983. Available from: https://linkinghub.elsevier.com/retrieve/pii/0022309383900972. https://doi.org/10.1016/0022-3093(83)90097-2t DOI: https://doi.org/10.1016/0022-3093(83)90097-2

Manara D, Grandjean A, Neuville DR. Structure of borosilicate glasses and melts: A revision of the Yun, Bray, and Dell model. J Non Cryst Solids. 2009. Available from: https://linkinghub.elsevier.com/retrieve/pii/ S0022309309005845. https://doi.org/10.1016/j. jnoncrysol.2009.08.033t

Kokubo T, Takadama H. How useful is SBF in predicting in vivo bone bioactivity. Biomaterials. 2006; 27:2907-15. https://doi.org/10.1016/j.biomaterials.2006.01.017 PMid:16448693t DOI: https://doi.org/10.1016/j.biomaterials.2006.01.017

Ali A, Singh BN, Yadav S, Ershad M, Singh SK, Mallick SP, Pyare R. CuO assisted borate 1393B3 glass scaffold with enhanced mechanical performance and cytocompatibility: An In vitro study. J Mech Behav Biomed Mater. 2021; 114:104231. https://doi.org/10.1016/j. jmbbm.2020.104231 PMid:33276214t DOI: https://doi.org/10.1016/j.jmbbm.2020.104231

Ershad M, Vyas VK, Prasad S, Ali A, Pyare R. Synthesis and characterization of cerium- and lanthanumcontaining bioactive glass. Key Eng Mater. 2017; 751:617-28. https://doi.org/10.4028/www.scientific.net/ KEM.751.617t DOI: https://doi.org/10.4028/www.scientific.net/KEM.751.617

Nayak JP, Kumar S, Bera J. Sol-gel synthesis of bio-glassceramics using rice husk ash as a source for silica and its characterization. J Non-Cryst Solids. 2010; 356:1447-51. https://doi.org/10.1016/j.jnoncrysol.2010.04.041t DOI: https://doi.org/10.1016/j.jnoncrysol.2010.04.041

Vyas VK, Kumar AS, Ali A, Prasad S, Srivastava P, Mallick SP, Ershad M, Singh SP, Pyare R. Assessment of nickel oxide-substituted bioactive glass-ceramic on in vitro bioactivity and mechanical properties. Bol Soc Esp Ceram Vidrio. 2016; 55(6):228-38. https://doi. org/10.1016/j.bsecv.2016.09.005t DOI: https://doi.org/10.1016/j.bsecv.2016.09.005

Ershad M, Ali A, Mehta NS, Singh RK, Singh SK, Pyare R. Mechanical and biological response of (CeO2+La2O3)- substituted 45S5 bioactive glasses for biomedical application. J Aust Ceram Soc. 2020; 56(4):1243-52. https://doi.org/10.1007/s41779-020-00471-3t DOI: https://doi.org/10.1007/s41779-020-00471-3

Ali A, Ershad M, Hira S, Pyare R. Mechanochemical and in vitro cytocompatibility evaluation of zirconiamodified silver-substituted 1393 bioactive glasses. Bol Soc Esp Ceram Vidrio. 2022; 61(1):64-75. https://doi. org/10.1016/j.bsecv.2020.07.002 DOI: https://doi.org/10.1016/j.bsecv.2020.07.002