Herbs as Antidote for Snake Bite Treatment- Traditional Practices and Its Future Prospects- A Review

Jump To References Section

Authors

  • Department of Biotechnology, Karunya Institute of Technology and Sciences, Coimbatore – 641114, Tamil Nadu ,IN
  • Department of Biotechnology, Karunya Institute of Technology and Sciences, Coimbatore – 641114, Tamil Nadu ,IN
  • Department of Biotechnology, Karunya Institute of Technology and Sciences, Coimbatore – 641114, Tamil Nadu ,IN
  • Department of Biotechnology, Karpagam Academy of Higher Education, Coimbatore – 641021, Tamil Nadu ,IN
  • Department of Biotechnology, SASTRA Deemed to be University, Tanjore – 613401, Tamil Nadu ,IN

DOI:

https://doi.org/10.18311/jnr/2022/28405

Keywords:

Snakebite, Herbal Plants, Secondary Metabolite, Antidote, Herbs, Snake venom
ethnobotany

Abstract

Snake bite is a life-threatening neglected tropical infection reporting high mortality across the world including India. Out of the available yearly statistics of this occupational hazard caused 4.5-5.4 million people and nearly 1,38,000 fatalities were reported globally. Several factors such as the low availability of antivenom, inadequate health centres in rural areas, poor transportation facilities affected the higher number of morbidity and mortality cases of snake bite. The prognostic and diagnostic approach towards the snake bite infection is difficult due to its complexity in venom. The conventional therapy is polyvalent antivenom derived from horses or sheep, with its limitations. The traditional physicians use plants and other herbs as its sustainable remedy for snake bite treatment. Nearly, 523 plant species from 122 families reported their neutralizing property against toxic venom. The secondary metabolites extracted from plants, are capable of reducing the toxic effects of the venom. Many research works has been reported the inhibitory potential of the plant compounds against the snake venom enzymes. Therefore, there is a necessity for increasing therapeutic studies on plant metabolites and the development of an antidote for the better treatment of snakebite. This review article discusses various herbal plant used for snake bite in India.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Downloads

Published

2022-07-30

How to Cite

David Paul Raj, R. S., Ann Mathew, A., Jesse Joel, T., Beena Kanimozhi, R., & Agnes Preethy, H. (2022). Herbs as Antidote for Snake Bite Treatment- Traditional Practices and Its Future Prospects- A Review. Journal of Natural Remedies, 22(3), 269–290. https://doi.org/10.18311/jnr/2022/28405

Issue

Section

Review Articles
Received 2021-08-13
Accepted 2022-03-09
Published 2022-07-30

 

References

Gupta YK, Peshin SS. Do herbal medicines have potential for managing snake bite envenomation? Toxicol Int. 2012; 19(2):89–99. https://doi.org/10.4103/0971-6580.97194. PMid:22778503. PMCid:PMC3388772 DOI: https://doi.org/10.4103/0971-6580.97194

Knudsen C, Jürgensen JA, Føns S, Haack AM, Friis RUW, Dam SH, et al. Snakebite Envenoming Diagnosis and Diagnostics. Front Immunol. 2021; 12:9–12. https://doi.org/10.3389/fimmu.2021.661457. PMid:33995385. PMCid:PMC8113877 DOI: https://doi.org/10.3389/fimmu.2021.661457

Vaiyapuri S, Vaiyapuri R, Ashokan R, Ramasamy K, Nattamaisundar K, Jeyaraj A, et al. Snakebite and its socio-economic impact on the rural population of Tamil Nadu, India. PLoS One. 2013; 8(11):10–3. https://doi. org/10.1371/journal.pone.0080090. PMid:24278244. PMCid:PMC3836953 DOI: https://doi.org/10.1371/journal.pone.0080090

Clare RH, Hall SR, Patel RN, Casewell NR. Small Molecule Drug Discovery for Neglected Tropical Snakebite. Trends Pharmacol Sci. 2021; 42(5):340–53. https://doi.org/10.1016/j.tips.2021.02.005. PMid:33773806 DOI: https://doi.org/10.1016/j.tips.2021.02.005

Casewell NR, Wagstaff SC, Wus?ter W, Cook DAN, Bolton FMS, King SI, et al. Medically important differences in snake venom composition are dictated by distinct postgenomic mechanisms. Proc Natl Acad Sci USA. 2014; 111(25):9205–10. https://doi.org/10.1073/pnas.1405484111. PMid:24927555. PMCid:PMC4078820 DOI: https://doi.org/10.1073/pnas.1405484111

Upasani S V., Beldar VG, Tatiya AU, Upasani MS, Surana SJ, Patil DS. Ethnomedicinal plants used for snakebite in India: A brief overview. Integr Med Res. 2017; 6(2):114–30. https://doi.org/10.1016/j.imr.2017.03.001. PMid:28664135. PMCid:PMC5478250 DOI: https://doi.org/10.1016/j.imr.2017.03.001

Upasani MS, Upasani SV, Beldar VG, Beldar CG, Gujarathi PP. Infrequent use of medicinal plants from India in snakebite treatment. Integr Med Res. 2018; 7(1):9–26. https://doi.org/10.1016/j.imr.2017.10.003. PMid:29629287. PMCid:PMC5884010 DOI: https://doi.org/10.1016/j.imr.2017.10.003

Pullani S, Prabha AL. Plant-Based traditional remedies for snakebite in India: a Recent Update Review. Int J Pharm Sci Res. 2020; 11(11):5322–33.

Russell JJ, Schoenbrunner A, Janis JE. Snake bite management: A scoping review of the literature. Plast Reconstr Surg — Glob Open. 2021; 2021:1–12. https://doi.org/10.1097/GOX.0000000000003506. PMid:33936914. PMCid:PMC8084039 DOI: https://doi.org/10.1097/GOX.0000000000003506

David Paul Raj RS, Regi R, Mathew AA, Beena Kanimozhi R. In vitro production of secondary metabolites from Andrographis paniculata and Rawvolfia serpentina against snake venom. Drug Invent Today. 2020; 14(2):179–82.

Senji Laxme RR, Khochare S, de Souza HF, Ahuja B, Suranse V, Martin G, et al. Beyond the ‘Big four’: Venom profiling of the medically important yet neglected Indian snakes reveals disturbing antivenom deficiencies. PLoS Negl Trop Dis. 2019; 13(12):1–31. https://doi.org/10.1371/journal. pntd.0007899. PMid:31805055. PMCid:PMC6894822 DOI: https://doi.org/10.1371/journal.pntd.0007899

Anghore D, Sharma A, Singh S, Kosey S, Jindal S. Treatment of snake bite in India : A Review. Int J Pharm Teach Pract. 2015; 6(4):2635–41.

Warrell DA, Gutiérrez JM, Calvete JJ, Williams D. New approaches and technologies of venomics to meet the challenge of human envenoming by snakebites in India. Vol. 138, Indian J Med Res. 2013:38–59.

Dissanayake DSB, Thewarage LD, Waduge RN, Ranasinghe JGS, Kularatne SAM, Rajapakse RPVJ. The venom of spectacled cobra (Elapidae: Naja naja): In vitro study from Distinct Geographical Origins in Sri Lanka. J Toxicol. 2018; 2018:1–14. https://doi.org/10.1155/2018/7358472. PMid:30363742. PMCid:PMC6180993 DOI: https://doi.org/10.1155/2018/7358472

Williams HF, Layfield HJ, Vallance T, Patel K, Bicknell AB, Trim SA, et al. The urgent need to develop novel strategies for the diagnosis and treatment of snakebites. Toxins (Basel). 2019; 11(6):1–29. https://doi.org/10.3390/toxins11060363. PMid:31226842. PMCid:PMC6628419 DOI: https://doi.org/10.3390/toxins11060363

Ferraz CR, Arrahman A, Xie C, Casewell NR, Lewis RJ, Kool J, et al. Multifunctional toxins in snake venoms and therapeutic implications: From pain to hemorrhage and necrosis. Front Ecol Evol. 2019; 7:1–19. https://doi.org/10.3389/fevo.2019.00218 DOI: https://doi.org/10.3389/fevo.2019.00218

Ojeda PG, Ramírez D, Alzate-Morales J, Caballero J, Kaas Q, González W. Computational studies of snake venom toxins. Toxins (Basel). 2018; 10(1):1–24. https://doi.org/10.3390/toxins10010008. PMid:29271884. PMCid:PMC5793095 DOI: https://doi.org/10.3390/toxins10010008

Xiao H, Pan H, Liao K, Yang M, Huang C. Snake Venom PLA2, a promising target for broad-spectrum antivenom drug development. Biomed Res Int. 2017; 2017:1–10. https://doi.org/10.1155/2017/6592820. PMid:28758124 PMCid:PMC5512054 DOI: https://doi.org/10.1155/2017/6592820

Bhavya J, Vineetha MS, Sundaram PM, Veena SM, Dhananjaya BL, More SS. Low-molecular weight hyal uronidase from the venom of Bungarus caeruleus (Indian common krait) snake: Isolation and partial characterization. J Liq Chromatogr Relat Technol. 2016; 39(4):203–8. https://doi.org/10.1080/10826076.2016.1144203 DOI: https://doi.org/10.1080/10826076.2016.1144203

Silva A, Maduwage K, Sedgwick M, Pilapitiya S, Weerawansa P, Dahanayaka NJ, et al. Neuromuscular effects of common krait (Bungarus caeruleus) envenoming in Sri Lanka. PLoS Negl Trop Dis. 2016; 10(2):1–18. https:// doi.org/10.1371/journal.pntd.0004368. PMid:26829229. PMCid:PMC4734751 DOI: https://doi.org/10.1371/journal.pntd.0004368

Williams SS, Wijesinghe CA, Jayamanne SF, Buckley NA, Dawson AH, Lalloo DG, et al. Delayed psychological morbidity associated with snakebite envenoming. PLoS Negl Trop Dis. 2011; 5(8):1–6. https://doi.org/10.1371/journal. pntd.0001255. PMid:21829741. PMCid:PMC3149015 DOI: https://doi.org/10.1371/journal.pntd.0001255

Kini RM, Fox JW. Milestones and future prospects in snake venom research. Toxicon. 2013; 62:1–2. https://doi. org/10.1016/j.toxicon.2012.09.002. PMid:22995211 DOI: https://doi.org/10.1016/j.toxicon.2012.09.002

Gouda A, Elnabarawy N, Badawy S. A study of snakebite envenomation cases admitted to egyptian national poisoning center. Acta Medica Int. 2017; 4(2):34. https://doi.org/10.4103/ami.ami_48_17 DOI: https://doi.org/10.4103/ami.ami_48_17

Dey A, De N jitendra. Traditional Use of Plants Against Snakebite in Indian Subcontinent : a. African J Tradit Complement Altern Med. 2012; 9(1):153–74. https://doi. org/10.4314/ajtcam.v9i1.20. PMid:23983332. PMCid: PMC3746536 DOI: https://doi.org/10.4314/ajtcam.v9i1.20

Jadhav SK KS. Traditional Herbal Medicines for the Treatment of Snake Bite and Scorpion Sting by the Tribes of South Surguja, Chhattisgarh, India. Med Aromat Plants. 2013; 02(01):2012–4. https://doi.org/10.4172/2167- 0412.1000120 DOI: https://doi.org/10.4172/2167-0412.1000120

Ramaswamy M, Duraikannu S, Solaimuthu C. Medicinal plants for the treatment of snakebites among the rural populations of Indian subcontinent: An indication from the traditional use To pharmacological confirmation. J Drug Deliv Ther. 2018; 8(5):62–8. https://doi.org/10.22270/jddt. v8i5.1799 DOI: https://doi.org/10.22270/jddt.v8i5.1799

Sebastin Santhosh M, Hemshekhar M, Sunitha K, M. Thushara R, Jnaneshwari S, Kemparaju K, et al. Snake Venom induced local toxicities: plant secondary metabolites as an auxiliary therapy. Mini-Reviews Med Chem. 2012; 13(1):106–23. https://doi.org/10.2174/138955713804484730 DOI: https://doi.org/10.2174/1389557511307010106

Ashok G, Swaapnil M, Shimpi M. Herbal antidotes for the management of snake bite. World J Pharm Pharm Sci. 2020; 9(1):735–43.

Sajon SR, Sana S, Rana S, Sajon SR. Anti-venoms for snake bite: A synthetic and traditional drugs review. J Pharmacogn Phytochem. 2017; 6(63):190–7.

Pandikumar P, Chellappandian M, Mutheeswaran S, Ignacimuthu S. Consensus of local knowledge on medicinal plants among traditional healers in Mayiladumparai block of Theni District, Tamil Nadu, India. J Ethnopharmacol. 2011; 134(2):354–62. https://doi.org/10.1016/j.jep.2010.12.027. PMid:21193023 DOI: https://doi.org/10.1016/j.jep.2010.12.027

Alagesaboopathi C. Ethnomedicinal plants used for the treatment of snake bites by Malayali tribal’s and rural people in Salem district, Tamil Nadu, India. Int J Biosci. 2013; 3(2):42–53. https://doi.org/10.12692/ijb/3.2.42-53 DOI: https://doi.org/10.12692/ijb/3.2.42-53

Marandi RR, Britto SJ. Ethnomedicinal plants used by the oraon tribals of latehar district of Jharkhand, India. Asian J Pharm Res. 2014; 4(3):126–33.

Singh B, Borthakur SK, Phukan SJ. A survey of ethnomedicinal plants utilized by the indigenous people of Garo Hills with special reference to the Nokrek Biosphere Reserve (Meghalaya), India. J Herbs Spices Med Plants. 2013; 20:1– 30. https://doi.org/10.1080/10496475.2013.819476 DOI: https://doi.org/10.1080/10496475.2013.819476

Lingaraju DP, Sudarshana MS, Rajashekar N. Ethnopharmacological survey of traditional medicinal plants in tribal areas of Kodagu district, Karnataka, India. JOPR J Pharm Res. 2013; 6(2):284–97. https://doi. org/10.1016/j.jopr.2013.02.012 DOI: https://doi.org/10.1016/j.jopr.2013.02.012

Mitra S, Mukherjee S. Some plants used as antidote to snake bite in West Bengal, India. Divers Conserv Plants Tradit Knowl. 2012; 2012:515–37.

Basha SK, Sudarsanam G. Traditional use of plants against snakebite in sugali tribes of yerramalais of Kurnool district, Andhra Pradesh, India. Asian Pac J Trop Biomed. 2012; 2(2 Suppl.):S575–9. https://doi.org/10.1016/S2221- 1691(12)60276-7 DOI: https://doi.org/10.1016/S2221-1691(12)60276-7

Nautiyal BP, Hazarika TKL. Studies on wild edible fruits of Mizoram, India used as ethno-medicine. Genet Resour Crop Evol. 2012; 59:1767–76. https://doi.org/10.1007/ s10722-012-9799-5 DOI: https://doi.org/10.1007/s10722-012-9799-5

Sulochana A, Raveendran D, Krishnamma A, Oommen O. Ethnomedicinal plants used for snake envenomation by folk traditional practitioners from Kallar forest region of South Western Ghats, Kerala, India. J Intercult Ethnopharmacol. 2015; 4(1):47–51. https:// doi.org/10.5455/jice.20141010122750. PMid:26401384. PMCid:PMC4566766 DOI: https://doi.org/10.5455/jice.20141010122750

Singh EA, Kamble SY, Bipinraj NK, Jagtap S. Medicinal plants used by the thakar tribes of Raigad District, Maharastra for the treatment of snake-bite and scorpionbite. Int J Phytothearpy Res. 2012; 2(2):26–35.

Kanneboyena O, Suthari S, Raju VS. Ethnomedicinal Knowledge of inhabitants from Gundlabrahmeswaram Wildlife Sanctuary (Eastern Ghats), Andhra Pradesh, India. Am J Ethnomedicine. 2015; 2(6):333–46.

Vijayakumar S, Morvin Yabesh JE, Prabhu S, Manikandan R, Muralidharan B. Quantitative ethnomedicinal study of plants used in the Nelliyampathy hills of Kerala, India. J Ethnopharmacol. 2015; 161:238–54. https://doi. org/10.1016/j.jep.2014.12.006. PMid:25529616 DOI: https://doi.org/10.1016/j.jep.2014.12.006

Krishna NR, Varma Y, Saidulu C. Ethnobotanical studies of Adilabad District, Andhra Pradesh, India. J Pharmacogn Phytochem. 2014; 18(31):18–36.

Das D, Nath D, Das A. Ethnomedicinal plants used by traditional healers of North Tripura. J Ethnopharmacol. 2015; 166:135–48. https://doi.org/10.1016/j.jep.2015.03.026. PMid:25794807 DOI: https://doi.org/10.1016/j.jep.2015.03.026

Giresha AS, Anitha MG, Dharmappa KK. Phytochemical composition, antioxidant and in-vitro anti-inflammatory activity of ethanol extract of Ruta graveolens L. leaves. Int J Pharm Pharm Sci. 2015; 7(10):272–6.

Shah A, Sarvat R, Shoaib S, Ayodele AE, Nadeem M, Qureshi TM, et al. An ethnobotanical survey of medicinal plants used for the treatment of snakebite and scorpion sting among the people of namal valley, Mianwali district, Punjab, Pakistan. Appl Ecol Environ Res. 2018; 16(1):111– 43. https://doi.org/10.15666/aeer/1601_111143 DOI: https://doi.org/10.15666/aeer/1601_111143

Choudhury S, Sharma P, Choudhury MD, Sharma GD. Ethnomedicinal plants used by Chorei tribes of Southern Assam, North Eastern India. Asian Pacific J Trop Dis. 2012; 2(Suppl.1):141–7. https://doi.org/10.1016/S2222- 1808(12)60140-6 DOI: https://doi.org/10.1016/S2222-1808(12)60140-6

Gomes A, Das R, Sarkhel S, Mishra R, Mukherjee S, Bhattacharya S, et al. Herbs and herbal constituents active against snake bite. Indian J Exp Biol. 2010; 48(9):865–78.

Theakston RDG, Laing GD. Diagnosis of snakebite and the importance of immunological tests in venom research. Toxins (Basel). 2014; 6(5):1667–95. DOI: https://doi.org/10.3390/toxins6051667

Gutiérrez JM, Warrell DA, Williams DJ, Jensen S, Brown N, Calvete JJ, et al. The Need for full integration of snakebite envenoming within a global strategy to combat the neglected tropical diseases: The way forward. PLoS Negl Trop Dis. 2013; 7(6):7–9. https://doi.org/10.1371/journal. pntd.0002162. PMid:23785526. PMCid:PMC3681653 DOI: https://doi.org/10.1371/journal.pntd.0002162

Knudsen C, Laustsen AH. Recent advances in next generation snakebite antivenoms. Trop Med Infect Dis. 2018; 3(2):1–11. https://doi.org/10.3390/tropicalmed3020042. PMid:30274438. PMCid:PMC6073149 DOI: https://doi.org/10.3390/tropicalmed3020042

Laustsen AH, Karatt-Vellatt A, Masters EW, Arias AS, Pus U, Knudsen C, et al. In vivo neutralization of dendrotoxin- mediated neurotoxicity of black mamba venom by oligoclonal human IgG antibodies. Nat Commun. 2018; 9(1):1–9. https://doi.org/10.1038/s41467-018-06086-4. PMid:30459411. PMCid:PMC6243996 DOI: https://doi.org/10.1038/s41467-018-07480-8

Kini RM, Sidhu SS, Laustsen AH. Biosynthetic oligoclonal antivenom (BOA) for snakebite and next-generation treatments for snakebite victims †. Toxins (Basel). 2018;10(12):1–10. https://doi.org/10.3390/toxins10120534. PMid:30551565. PMCid:PMC6315346 DOI: https://doi.org/10.3390/toxins10120534

de Castañeda RR, Durso AM, Ray N, Fernández JL, Williams DJ, Alcoba G, et al. Snakebite and snake identification: empowering neglected communities and health-care providers with AI. Lancet Digit Heal. 2019;1(5):e202–3. https://doi.org/10.1016/S2589-7500(19)30086-X DOI: https://doi.org/10.1016/S2589-7500(19)30086-X

Puzari U, Mukherjee AK. Recent developments in diagnostic tools and bioanalytical methods for analysis of snake venom: A critical review. Anal Chim Acta. 2020; 1137(xxxx):208–24. https://doi.org/10.1016/j.aca.2020.07.054. PMid:33153604 DOI: https://doi.org/10.1016/j.aca.2020.07.054

Sanchez-Castro EE, Pajuelo-Reyes C, Tejedo R, Soria-Juan B, Tapia-Limonchi R, Andreu E, et al. Mesenchymal stromal cell-based therapies as promising treatments for muscle regeneration after snakebite envenoming. Front Immunol. 2021; 11:1–17. https://doi.org/10.3389/fimmu.2020.609961. PMid:33633730. PMCid:PMC7902043 DOI: https://doi.org/10.3389/fimmu.2020.609961

Raghavan S, Jayaraman G. Synergistic effect of flavonoids combined with antivenom on neutralisation of Naja naja venom. Asian Pac J Trop Biomed. 2021; 11(7):298–307. https://doi.org/10.4103/2221-1691.309665 DOI: https://doi.org/10.4103/2221-1691.309665

Kadam P, Ainsworth S, Sirur FM, Patel DC, Kuruvilla JJ, Majumdar DB. Approaches for implementing society- led community interventions to mitigate snakebite envenoming burden: The she-india experience. PLoS Negl Trop Dis. 2021; 15(2):1–7. https://doi.org/10.1371/journal. pntd.0009078. PMid:33630848. PMCid:PMC7906396 DOI: https://doi.org/10.1371/journal.pntd.0009078

Vaidya SM, Singh AR, Patel VG, Khan NA, Yewale RP, Kale DMK. A review on herbs against snake venom. J Pharmacogn Phytochem. 2018; 7(SP6):5–9. https://doi. org/10.22271/phyto.2018.v7.isp6.1.02 DOI: https://doi.org/10.22271/phyto.2018.v7.isp6.1.02

Gómez-Betancur I, Gogineni V, Salazar-Ospina A, León F. Perspective on the therapeutics of anti-snake venom. Molecules. 2019; 24(18):1–29. https://doi.org/10.3390/molecules24183276. PMid:31505752. PMCid:PMC6767026 DOI: https://doi.org/10.3390/molecules24183276

Njila MIN, Mahdi E, Lembe DM, Nde Z, Nyonseu D. Review on extraction and isolation of plant secondary metabolites. 7th Int’l Conf Agric Chem Biol Environ Sci; 2017. p. 67–72.

Saganuwan SA. Comparative therapeutic index, lethal time and safety margin of various toxicants and snake antivenoms using newly derived and old formulas. BMC Res Notes. 2020; 13(1):1–7. https://doi.org/10.1186/s13104- 020-05134-x. PMid:32546265. PMCid:PMC7296648 DOI: https://doi.org/10.1186/s13104-020-05134-x

Justin K, Edmond S, Ally M, Xin H. Plant secondary metabolites: Biosynthesis, classification, function and pharmacological properties. J Pharm Pharmacol. 2014; 2:377–92.

Singh R. Chemotaxonomy: A tool for plant classification. J Med Plants Stud. 2016; 4(2):90–3.

Ahmed E, Arshad M, Zakriyya Khan M, Shoaib Amjad M, Mehreen Sadaf H, Riaz I, et al. Secondary metabolites and their multidimensional prospective in plant life. J Pharmacogn Phytochem. 2017; 6(2):205–14.

Makhija IK, Khamar D. Anti-snake venom properties of medicinal plants. Sch Res Libr. 2010; 2(5):399–411.

Omara T, Kagoya S, Openy A, Omute T, Ssebulime S, Kiplagat KM, et al. Antivenin plants used for treatment of snakebites in Uganda: Ethnobotanical reports and pharmacological evidences. Trop Med Health. 2020; 48(1):1–16. https://doi.org/10.1186/s41182-019-0187-0. PMid:32071543. PMCid:PMC7014759 DOI: https://doi.org/10.1186/s41182-019-0187-0

Bhattacharjee P, Bhattacharyya D. Medicinal plants as snake venom antidotes. J Exp Appl Anim Sci. 2013; 1(1):156–81.

Durairaj B, Muthu S, Shreedhar K. In vitro antivenom and antioxidant potential of Vitex negundo leaves (green and blue) against Russell’s viper (Daboia russelli) and Indian cobra (Naja naja) venom. Pelagia Res Libr Eur J Exp Biol. 2014; 4(4):207–19.

Gbolade AA. Nigerian medicinal plants with anti-snake venom activity— A review. J Malar Res phytomedicine. 2021; 4:29–44.

Chekuri S, Lingfa L, Panjala S, Bindu KCS, Anupalli RR. Acalypha indica L. — An important medicinal plant: A Brief review of its pharmacological properties and restorative potential. European J Med Plants. 2020; 31(11):1–10. https://doi.org/10.9734/ejmp/2020/v31i1130294 DOI: https://doi.org/10.9734/ejmp/2020/v31i1130294

Kothapalli L, Gite PR, Asha T, Rabindra SNN. Evaluation of potential of achyranthes aspera leaves against snake. Int J Pharm Drug Anal. 2016; 4(12):505–13.

Amog PU, Manjuprasanna VN, Yariswamy M, Nanjaraj Urs AN, Joshi V, Suvilesh KN, et al. Albizia lebbeck seed methanolic extract as a complementary therapy to manage local toxicity of Echis carinatus venom in a murine model. Pharm Biol. 2016; 54(11):2568–74. https://doi.org/10.3109/138802 09.2016.1171882. PMid:27211855 DOI: https://doi.org/10.3109/13880209.2016.1171882

Amog PU, Yariswamy M, Vikram J, Urs ANN, Suvilesh KN, Manjuprasanna VN, et al. Local tissue damage induced by Echis carinatus venom: Neutralization by Albizia lebbeck seed aqueous extract in mice model. J Pharm Res. 2016; 10(4):167–75.

Ghosh R, Mana K, Sarkhel S. Ameliorating effect of Alstonia scholaris L. bark extract on histopathological changes following viper envenomation in animal models. Toxicol Reports. 2018; 5:988–93. https://doi.org/10.1016/j. toxrep.2018.10.004. PMid:30319940. PMCid:PMC6180435 DOI: https://doi.org/10.1016/j.toxrep.2018.10.004

Ghosh R, Sarkhel S, Saha K, Parua P, Chatterjee U, Mana K. Synthesis, characterization and evaluation of venom neutralization potential of silver nanoparticles mediated Alstonia scholaris Linn bark extract. Toxicol Reports. 2021; 8:888–95. https://doi.org/10.1016/j.toxrep.2021.04.006. PMid:33996502. PMCid:PMC8091482 DOI: https://doi.org/10.1016/j.toxrep.2021.04.006

Nayak AG, Kumar N, Shenoy S, Roche M. Anti-snake venom and methanolic extract of Andrographis paniculata: A multipronged strategy to neutralize Naja naja venom acetylcholinesterase and hyaluronidase. 3 Biotech. 2020; 10(11):1–12. https://doi.org/10.1007/s13205-020-02462-4. PMid:33083200. PMCid:PMC7561646 DOI: https://doi.org/10.1007/s13205-020-02462-4

Sakthivel G, Dey A, Nongalleima K, Chavali M, Rimal Isaac RS, Singh NS, et al. In vitro and in vivo evaluation of polyherbal formulation against Russell’s viper and cobra venom and screening of bioactive components by docking studies. Evidence-based Complement Altern Med. 2013; 2013:1– 12. https://doi.org/10.1155/2013/781216. PMid:23533518. PMCid:PMC3600290 DOI: https://doi.org/10.1155/2013/781216

Mishra S, Aeri V, Gaur PK, Jachak SM. Phytochemical, therapeutic, and ethnopharmacological overview for a traditionally important herb: Boerhavia diffusa linn. Biomed Res Int. 2014; 2014:1–19. https://doi.org/10.1155/2014/808302. https://doi.org/10.7439/ijbar.v5i1.567 DOI: https://doi.org/10.1155/2014/808302

Giresha AS, Pramod SN, Sathisha AD, Dharmappa KK. Neutralization of inflammation by inhibiting in vitro and in vivo secretory phospholipase A2 by ethanol extract of Boerhaavia diffusa L. Pharmacognosy Res. 2017; 9(2):174– 81.

Chacko N, Inrahim M SC. Evaluvation of antivenom activity of Calotropis gigantea plant extract against Vipera russelli snake venom. Int J Pharm Sci Res. 2012; 3(07):2272–9.

Delmut MB, Parente LML, Paula JR, Conceição EC, Santos AS, Pfrimer IAH, et al. Cassia occidentalis: effect on healing skin wounds induced by Bothrops moojeni in mice. J Pharm Technol Drug Res. 2013; 2(1):1–6. https://doi. org/10.7243/2050-120X-2-10 DOI: https://doi.org/10.7243/2050-120X-2-10

Ricciardi Verrastro B, Maria Torres A, Ricciardi G, Teibler P, Maruñak S, Barnaba C, et al. The effects of Cissampelos pareira extract on envenomation induced by Bothrops diporus snake venom. J Ethnopharmacol. 2018; 212:36–42. https://doi.org/10.1016/j.jep.2017.09.015. PMid:28943445 DOI: https://doi.org/10.1016/j.jep.2017.09.015

Manonmani S, Madhavan R, Shanmugapriya P, Manjari V, Murugesan VBS. A review of beneficial effects of Siddha medicinal herbs on Snakebite. Int J Curr Res Biol Med. 2016; 1(7):27–35. https://doi.org/10.22192/ijcrbm.2016.01.07.003 DOI: https://doi.org/10.22192/ijcrbm.2016.01.07.003

Kumarapppan C, Jaswanth A, Kumarasunderi K. Antihaemolytic and snake venom neutralizing effect of some Indian medicinal plants. Asian Pac J Trop Med. 2011; 4(9):743–7. https://doi.org/10.1016/S1995- 7645(11)60185-5 DOI: https://doi.org/10.1016/S1995-7645(11)60185-5

Bolleddu R, Venkatesh S, Hazra K, Rao MM, Shyamsunder R. Anatomical and antihyperglycemic activity of dichrostachys cinerea roots. Med J DY Patil Vidyapeeth 2020; 13(3):258–63. https://doi.org/10.4103/mjdrdypu. mjdrdypu_95_19 DOI: https://doi.org/10.4103/mjdrdypu.mjdrdypu_95_19

Singh P, Yasir M, Khare R, Shrivastava R. Green synthesis of silver nanoparticles using Indian male fern (Dryopteris Cochleata), operational parameters, characterization and bioactivity on Naja naja venom neutralization. Toxicol Res (Camb). 2020; 9(5):706–13. https://doi.org/10.1093/toxres/ tfaa070. PMid:33178431. PMCid:PMC7640931 DOI: https://doi.org/10.1093/toxres/tfaa070

Rehamn and Sultana. Ethnobotanical survey of sariska and siliserh regions from Alwar District of Rajasthan, India. Ethnobot Leafl. 2009; 13:171–88.

Gopi K, Renu K, Jayaraman G. Inhibition of Naja naja venom enzymes by the methanolic extract of Leucas aspera and its chemical profile by GC-MS. Toxicol Reports. 2014; 1:667–73. https://doi.org/10.1016/j.toxrep.2014.08.012. PMid:28962280. PMCid:PMC5598287 DOI: https://doi.org/10.1016/j.toxrep.2014.08.012

Vijendra N, Kumar KP. Traditional knowledge on ethnomedicinal uses prevailing in tribal pockets of Chhindwara and Betul Districts, Madhya Pradesh, India. African J Pharm Pharmacol. 2010; 4(9):662–70.

Minu V, Harsh V, Ravikant T, Paridhi J, Noopur S. Medicinal plants of Chhattisgarh with anti-snake venom property. Int J Curr Pharm Rev Res. 2012; 3(2):1–10.

Manjappa B, Gangaraju S, Girish KS, Kemparaju K, Gonchigar SJ, Shankar RL, et al. Momordica charantia seed extract exhibits strong anticoagulant effect by specifically interfering in intrinsic pathway of blood coagulation and dissolves fibrin clot. Blood Coagul Fibrinolysis. 2015; 26(2):191–9. DOI: https://doi.org/10.1097/MBC.0000000000000191

Asad MHH Bin, Razi MT, Durr-e-Sabih, Najamus-Saqib Q, Nasim SJ, Murtaza G, et al. Anti-venom potential of Pakistani medicinal plants: Inhibition of anticoagulation activity of Naja naja karachiensis toxin. Curr Sci. 2013; 105(10):1419–24.

Ajisebiola BS, Rotimi S, Anwar U, Adeyi AO. Neutralization of Bitis arietans venom-induced pathophysiological disorder, biological activities and genetic alterations by Moringa oleifera leaves. Toxin Rev. 2020; 0(0):1–12. https://doi.org/1 0.1080/15569543.2020.1793780

Adeyi AO, Ajisebiola BS, Adeyi OE, Adekunle O, Akande OB, James AS, et al. Moringa oleifera leaf fractions attenuated Naje haje venom-induced cellular dysfunctions via modulation of Nrf2 and inflammatory signalling pathways in rats. Biochem Biophys Reports. 2021; 25. https://doi.org/10.1016/j.bbrep.2020.100890 PMid:33521334. PMCid:PMC7820385 DOI: https://doi.org/10.1016/j.bbrep.2020.100890

Krishnan SA, Dileepkumar R, Nair AS, Oommen OV. Studies on neutralizing effect of Ophiorrhiza mungos root extract against Daboia russelii venom. J Ethnopharmacol [Internet]. 2014; 151(1):543–7. https://doi.org/10.1016/j. jep.2013.11.010. PMid:24280030 DOI: https://doi.org/10.1016/j.jep.2013.11.010

Taher M, Shaari SS, Susanti D, Arbain D, Zakaria ZA. Genus Ophiorrhiza: A review of its distribution, traditional uses, phytochemistry, biological activities and propagation. Molecules. 2020; 25(11). https://doi.org/10.3390/molecules25112611. PMid:32512727. PMCid:PMC7321107 DOI: https://doi.org/10.3390/molecules25112611

Raghavamma STV, Rao NR, Rao GD. Inhibitory potential of important phytochemicals from Pergularia daemia (Forsk.) chiov., on snake venom (Naja naja). J Genet Eng Biotechnol. 2016; 14(1):211–7. https://doi.org/10.1016/j. jgeb.2015.11.002. PMid:30647617. PMCid:PMC6299870 DOI: https://doi.org/10.1016/j.jgeb.2015.11.002

Rajesh SS, Elango V, Sivaraman T. In vivo studies on detoxifying actions of aqueous bark extract of prosopis cineraria against crude venom from Indian cobra (Naja Naja). Bangladesh J Pharmacol. 2013; 8(4):395–400. https://doi. org/10.3329/bjp.v8i4.16684 DOI: https://doi.org/10.3329/bjp.v8i4.16684

Sivaraman T, Sreedevi NS, Meenachisundharam S, Vadivelan R. Neutralizing potential of rauvolfia serpentina root extract against naja naja venom. Brazilian J Pharm Sci. 2020; 56:1–10. https://doi.org/10.1590/s2175- 97902019000418050 DOI: https://doi.org/10.1590/s2175-97902019000418050

Tcheghebe OT, Seukep AJ, Tatong FN. Ethnomedicinal uses, phytochemical and pharmacological profiles, and toxicity of Sida acuta Burm. f.: A review article. Pharma Innov. 2017; 6(6, Part A):1.

Bin Asad MHH, Iqbal M, Akram MR, Khawaja NR, Muneer S, Shabbir MZ, et al. 5β-nucleotidases of Naja naja karachiensis snake venom: Their determination, toxicities and remedial approach by natural inhibitors (medicinal plants). Acta Pol Pharm — Drug Res. 2016; 73(3):667–73.

Guo R, Wang T, Zhou G, Xu M, Yu X, Zhang X, et al. Botany, Phytochemistry, pharmacology and toxicity of Strychnos nux-vomica L.: A review. Am J Chin Med. 2018; 46(1):1–23. https://doi.org/10.1142/S0192415X18500015. PMid:29298518 DOI: https://doi.org/10.1142/S0192415X18500015