Colorimetric Estimation of 3–Mercapto-1, 2-Propanediol by Silver Nanoparticles

Jump To References Section


  • ,IN
  • ,IN
  • ,IN



Silver Nanoparticle, 3-Mercapto-1, 2-Propanediol, Colorimetric Sensor, Detection of 3MPD, Calibration Curve.


Interaction of 3 -mercapto-1, 2- propanediol (3MPD) (C3H8O2S, 3MPD) with silver nanoparticles prepared by green method has been studied by electronic absorption spectroscopy and transmission electron microscopy. Here we report the changes in properties of AgNP in presence of biologically relevant molecule 3MPD. The assembly and the aggregation of the AgNP are established using UV-Visible spectra and transmission electron microscopy. The biosynthesized AgNP has been used as colorimetric sensor for detection of 3MPD. A new peak generated at 612 nm due to the self aggregation of silver nanoparticles occurred by the interaction of thiol group present in 3 MPD with AgNP. A calibration curve between the absorbance at 612 nm and the concentration of 3 MPD enabled us to estimate 3MPD present in water in presence of SDS.


Download data is not yet available.


Metrics Loading ...



How to Cite

Maiti, S., Barman, G., & Laha, J. K. (2016). Colorimetric Estimation of 3–Mercapto-1, 2-Propanediol by Silver Nanoparticles. Journal of Surface Science and Technology, 32(1-2), 46–50.



Received 2016-06-28
Accepted 2016-06-28
Published 2016-07-06



C. N. R. Rao, G. U. Kulkarni, P. J. Thomas, and P. P Edwards, Chem. Soc. Rev., 29, 27 (2000).

C. N. R. Rao, A. Muller, and A. K. Cheetham (Eds), ‘Recent Advancs in the Chemistry of Nanomaterials', Wiley –VCH Verlag Gmbh & Co., (2004).

E. Dujarin, L. -B Hsin, C. R. C. Wang, and S. Mann, Chem. Commun., 1264 (2001).

R. Elghanian, J. J. Storhoff, R. C. Mucic, R. L. Letsinger, and C. A. Mirkin, Science, 277, 1078 (1997).

C. A. Mirkin, R. L. Letsinger, R. C. Mucic, and J. J. Storhoff, Nature, 382, 607 (1996).

J. M. Nam, S. J. Park, and C. A. Mirkin, J. Am. Chem. Soc., 124, 3820 (2002).

S. Jhang, et al., Chem. Commun., 1816 (2007).

K. K. Caswell, J. N. Wilson, U. H. F. Bunz, and C. J. Murphy, J. Am. Chem. Soc., 125, 13914 (2003).

S. T. S. Joseph, B. I. Ipe, and K. G. Thomas, J. Phys. Chem. B, 110, 150 (2006).

R. Voggu, P. Suguna, S. Chandrasekaran, and C. N. R. Rao, Chem. Phys. Lett., 443, 118 (2007).

S. Lecomate, H. Wackerbarth, T. Soulimane, G. Buse, and P. Hildebrandt, J. Am. Chem. Soc., 120, 7381 (1998).

G. Barman, S. Maiti, and J. Konar, J. Anal. Sci. Tech., 4, 1 (2012).

N. Varghese, S. R. C. Vivekchand, A. Gobindaraj, and C. N. R. Rao, Chem. Phys. Lett., 450, 340 (2008).

C. W. Liu, C. C. Huang, and H. T. Chang, Langmuir, 24, 8346 (2008).

C. Rao, G. Kulkarni, P. Thomas, and P. Edwards, Chemistry - A European Journal, 8, 28 (2002).

S. Bruzzone, M. Malvaldi, G. Arrighini, and C. Guidotti, J. Phys. Chem. B, 109, 3807 (2005).

D. Roll, J. Malicka, I. Gryczynski, Z. Gryczynski, and J. Lakowicz, Analyst. Chem., 75, 3440 (2003).

M. Otamiri, and K. G. I. Nilsson, Int. J. Biol. Macromol., 26, 263 (1999).

D. Xiong, M. Chen, and H. Li, Chem. Comm., 7, 880 (2008).

G. Barman, S. Maiti, and J. Konar, Nanoscale Research Lett., 8, 181 (2013).

S. Maiti, G. Barman and J. Konar, Adv. Sci. Focus, 1, 145 (2013).

S. T. Dubas, V. Pimpan, Mater. Lett., 62, 2661 (2008).

J. Plank, P. R. Andres, I. Krause, and C. Winter, Protein Exp and Purification, 60, 176 (2008).

H. J. Gruss, M. A. Brach, F. Hermann, Blood, 87, 2419 (1996)

U. B. Christensen, M. Wamberg, F. A. G. El-Essawy, S. El-Hamid Ismail, C. B. Nielsen, V. V. Filichev, C. H. Jessen, M. Petersen, and E. B. Pedersen, Intercalating Nucleic Acids: Nucleosides, Nucleotides and Nucleic Acids, 23, 207 (2004).

R. L. Alexander, S. L. Morris-Natschke, K. S. Ishaq, R. A. Fleming, and G. L. Kucera. J. Med. Chem., 46, 4205 (2003).

K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, J. Phys. Chem. B, 107, 668 (2003).

A. L. Stepanov. Technical Physics, 49, 143 (2004).

F. X. Zhang, L. Han, L.B. Israel, J. G. Daras, M. M. Maye, N. K. Ly, and C. J. Zhong, Analyst, 127, 462 (2002).