Role of Phytochemicals against Diabetic Nephropathy: An Insight into Molecular Receptors

Jump To References Section

Authors

  • Department of Pharmacology, SRM College of Pharmacy, SRMIST, Kattankulathur - 603203, Tamil Nadu ,IN
  • Department of Pharmacology, SRM College of Pharmacy, SRMIST, Kattankulathur - 603203, Tamil Nadu ,IN
  • Department of Pharmacology, Captain Srinivasa Murthy Regional Ayurveda Drug Development Institute, Chennai - 600106, Tamil Nadu ,IN
  • Department of Pharmacology, SRM College of Pharmacy, SRMIST, Kattankulathur - 603203, Tamil Nadu ,IN

DOI:

https://doi.org/10.18311/ti/2023/v30i4/30998

Keywords:

Diabetic Nephropathy, Genetic Factors, Markers, Mechanism, Phytochemical, Receptors

Abstract

Diabetic nephropathy is a growing disorder among diabetic patients. A multifactorial disorder affects various factors like elevated metabolism and hypertension and blocks various molecular pathways such as AGE (Advanced Glycation End Product), RAAS (Renin Angiotensin Aldosterone System), PKC (Protein Kinase C), Hexosomamine, and polyol. Individuals are temporarily relieved by available combined treatments like ACE inhibitors and calcium channel blockers for blood pressure control as well as for severe albuminuria conditions, but these therapies have significant adverse health consequences. Herbal preparations play a potential role in the cure of various ailments that come first in the mind for humans which have least or without side effects and are economically stable for consumption. Since these constituents are cost-effective and have minimal side effects, scientifically validated phytochemicals or combined formulations are significant against diabetic nephropathy. This review focuses on the mechanism of receptors and the genes involved in the disease and the potential phytochemicals effectiveness against it.

Downloads

Download data is not yet available.

Published

2023-12-11

How to Cite

Devi, V. S., Vellapandian, C., Ilavarasan, R., & Sumithra, M. (2023). Role of Phytochemicals against Diabetic Nephropathy: An Insight into Molecular Receptors. Toxicology International, 30(4), 585–604. https://doi.org/10.18311/ti/2023/v30i4/30998
Received 2022-08-19
Accepted 2023-10-22
Published 2023-12-11

 

References

US Renal Data System. USRDS 2003 annual data report: Atlas of end-stage renal disease in the United States. Bethesda, MD: National Institutes of Health, National Institute of Diabetes and Digestive and Kidney Diseases; 2003.

Magee C, Grieve DJ, Watson CJ, Brazil DP. Diabetic nephropathy: A tangled web to unweave. Cardiovasc Drugs Ther. 2017; 31(5–6):579-92. https://doi.org/10.1007/ s10557-017-6755-9 DOI: https://doi.org/10.1007/s10557-017-6755-9

Papadopoulou-Marketou N, Paschou SA, Marketos N, Adamidi S, Adamidis S, Kanaka-Gantenbein C. Diabetic nephropathy in type 1 diabetes. Minerva Med. 2018; 109(3). https://doi.org/10.23736/S0026-4806.17.05496-9. DOI: https://doi.org/10.23736/S0026-4806.17.05496-9

Nelson RG, Bennett PH, Beck GJ, Tan M, Knowler WC, Mitch WE, Hirschman GH, Myers BD. Development and progression of renal disease in Pima Indians with non-insulin-dependent Diabetes Mellitus. N Engl J Med. 1996; 335(22):1636-42. https://doi.org/10.1056/ NEJM199611283352203 DOI: https://doi.org/10.1056/NEJM199611283352203

International Diabetes Federation (IDF) Diabetes Atlas. International Diabetes Federation; 7th ed. Belgium; 2015.

Andersen AR, Christiansen JS, Andersen JK, Kreiner S, Deckert T. Diabetic nephropathy in type 1 (insulindependent) diabetes: An epidemiological study. Diabetologia. 1983; 25(6). https://doi.org/10.1007/ BF00284458. DOI: https://doi.org/10.1007/BF00284458

Randhawa G. Developing culturally competent renal services in the United Kingdom: Tackling inequalities in health. Transplant Proc. 2003; 35(1):21-3. https://doi. org/10.1007/BF00284458. DOI: https://doi.org/10.1016/S0041-1345(02)03879-4

Pop-Busui R, Boulton AJM, Feldman EL, Bril V, Freeman R, Malik RA, Sosenko JM, Ziegler D. Diabetic neuropathy: A position statement by the American Diabetes Association. Diabetes Care. 2017; 40(1):136-54. https://doi.org/10.2337/ dc16-2042. DOI: https://doi.org/10.2337/dc16-2042

Afkarian M, Zelnick LR, Hall YN, Heagerty PJ, Tuttle K, Weiss NS, de Boer IH. Clinical manifestations of kidney disease among US adults with diabetes, 1988-2014. JAMA. 2016; 316(6):602. https://doi.org/10.1001/jama.2016.10924. DOI: https://doi.org/10.1001/jama.2016.10924

Adler AI, Stevens RJ, Manley SE, Bilous RW, Cull CA, Holman RR. UKPDS Group. Development and progression of nephropathy in type 2 diabetes: The United Kingdom Prospective Diabetes Study (UKPDS 64). Kidney Int. 2003; 63(1):225-32. https://doi.org/10.1046/j.1523- 1755.2003.00712.x DOI: https://doi.org/10.1046/j.1523-1755.2003.00712.x

Hall JGA. Textbook of Medical Physiology, 11th ed. Philadelphia; 2005.

Sun H-J, Wu Z-Y, Cao L, Zhu M-Y, Liu T-T, Guo L, Lin Y, Nie X-W, Bian J-S. Hydrogen sulfide: Recent progression and perspectives for the treatment of diabetic nephropathy. Molecules 2019; 24(15):2857. https://doi.org/10.3390/ molecules24152857 DOI: https://doi.org/10.3390/molecules24152857

Rudberg S, Persson B, Dahlquist G. Increased glomerular filtration rate as a predictor of diabetic nephropathy-an 8-year prospective study. Kidney Int. 1992; 41(4):822-8. https://doi.org/10.1038/ki.1992.126 DOI: https://doi.org/10.1038/ki.1992.126

Ruggenenti P, Cravedi P, Remuzzi G. The RAAS in the pathogenesis and treatment of diabetic nephropathy. Nat Rev Nephrol. 2010; 6(6):319-30. https://doi.org/10.1038/ nrneph.2010.58 DOI: https://doi.org/10.1038/nrneph.2010.58

Navarro JF, Mora C, Gomez M, Muros M, Lopez-Aguilar C, Garcia J. Influence of renal involvement on peripheral blood mononuclear cell expression behaviour of tumour necrosis factor- and interleukin-6 in type 2 diabetic patients. Nephrol Dial Transplant. 2007; 23(3):919-26. https://doi.org/10.1093/ndt/gfm674 DOI: https://doi.org/10.1093/ndt/gfm674

Sekizuka K, Tomino Y, Sei C, Kurusu A, Tashiro K, Yamaguchi Y, Kodera S, Hishiki T, Shirato I, Koide H. Detection of serum IL-6 in patients with diabetic nephropathy. Nephron. 1994; 68(2):284-5. https://doi. org/10.1159/000188281 DOI: https://doi.org/10.1159/000188281

DiPetrillo K, Coutermarsh B, Gesek FA. Urinary tumor necrosis factor contributes to sodium retention and renal hypertrophy during diabetes. Am J Physiol Physiol. 2003; 284(1):F113-21. https://doi.org/10.1152/ ajprenal.00026.2002 DOI: https://doi.org/10.1152/ajprenal.00026.2002

Chang S-Y, Chen Y-W, Chenier I, Tran SLM, Zhang S-L. Angiotensin II type II receptor deficiency accelerates the development of nephropathy in type I diabetes via oxidative stress and ACE2. Exp Diabetes Res. 2011; 201:1-12. https:// doi.org/10.1155/2011/521076 DOI: https://doi.org/10.1155/2011/521076

Kawanami D, Matoba K, Utsunomiya K. Signaling pathways in diabetic nephropathy. histol. Histopathol. 2016; 31(10):1059-67. https://doi.org/10.14670/HH-11- 777.

Schlondorff D. Cellular mechanisms of lipid injury in the glomerulus. Am J Kidney Dis. 1993; 22(1):72-82. https:// doi.org/10.1016/S0272-6386(12)70171-3 DOI: https://doi.org/10.1016/S0272-6386(12)70171-3

Shin SJ, Lim JH, Chung S, Youn D-Y, Chung HW, Kim HW, Lee J-H, Chang YS, Park CW. Peroxisome proliferatoractivated receptor-α activator fenofibrate prevents high-fat diet-induced renal lipotoxicity in spontaneously hypertensive rats. Hypertens Res. 2009; 32(10):835-45. https://doi.org/10.1038/hr.2009.107 DOI: https://doi.org/10.1038/hr.2009.107

Kono K, Kamijo Y, Hora K, Takahashi K, Higuchi M, Kiyosawa K, Shigematsu H, Gonzalez FJ, Aoyama T. PPARα attenuates the proinflammatory response in activated mesangial cells. Am J Physiol Physiol. 2009; 296(2):F328- 36. https://doi.org/10.1152/ajprenal.00484.2007 DOI: https://doi.org/10.1152/ajprenal.00484.2007

Park CW, Kim HW, Ko SH, Chung HW, Lim SW, Yang CW, Chang YS, Sugawara A, Guan Y, Breyer MD. Accelerated diabetic nephropathy in mice lacking the peroxisome proliferator–activated receptor α. Diabetes. 2006; 55(4):885- 93. https://doi.org/10.2337/diabetes.55.04.06.db05-1329 DOI: https://doi.org/10.2337/diabetes.55.04.06.db05-1329

Sarafidis PA, Bakris GL. Protection of the kidney by thiazolidinediones: An assessment from bench to bedside. Kidney Int. 2006; 70(7):1223-33. https://doi.org/10.1038/ sj.ki.5001620 DOI: https://doi.org/10.1038/sj.ki.5001620

Wu J, Zhang Y, Wang N, Davis L, Yang G, Wang X, Zhu Y, Breyer MD, Guan Y. Liver X receptor-α mediates cholesterol efflux in glomerular mesangial cells. Am J Physiol Physiol. 2004; 287(5):F886-95. https://doi.org/10.1152/ajprenal.00123.2004 DOI: https://doi.org/10.1152/ajprenal.00123.2004

Kelly KJ, Wu P, Patterson CE, Temm C, Dominguez JH. LOX-1 and inflammation: A new mechanism for renal injury in obesity and diabetes. Am J Physiol Physiol. 2008; 294(5):F1136-45. https://doi.org/10.1152/ ajprenal.00396.2007 DOI: https://doi.org/10.1152/ajprenal.00396.2007

Potier M, Karl M, Zheng F, Elliot SJ, Striker GE, Striker LJ. Estrogen-related abnormalities in glomerulosclerosisprone mice. Am J Pathol. 2002; 160(5):1877-85. https://doi. org/10.1016/S0002-9440(10)61134-0 DOI: https://doi.org/10.1016/S0002-9440(10)61134-0

Zelinsky SA. Global transcription profiling of estrogen activity: Estrogen receptor alpha regulates gene expression in the kidney. Endocrinology. 2003; 144:701-10. https://doi. org/10.1210/en.2002-220728 DOI: https://doi.org/10.1210/en.2002-220728

Maric C, Sullivan S. Estrogens and the diabetic kidney. Gend Med. 2008; 5:S103-13. https://doi.org/10.1016/j. genm.2008.03.010 DOI: https://doi.org/10.1016/j.genm.2008.03.010

Catanuto P, Doublier S, Lupia E, Fornoni A, Berho M, Karl M, Striker GE, Xia X, Elliot S. 17 β-estradiol and tamoxifen upregulate estrogen receptor β expression and control podocyte signaling pathways in a model of type 2 diabetes. Kidney Int. 2009; 75(11):1194-201. https://doi.org/10.1038/ ki.2009.69 DOI: https://doi.org/10.1038/ki.2009.69

Haussler MR, Haussler CA, Bartik L, Whitfield GK, Hsieh J-C, Slater S, Jurutka PW. Vitamin D receptor: Molecular signaling and actions of nutritional ligands in disease prevention. Nutr Rev. 2008; 66:S98-112. https://doi. org/10.1111/j.1753-4887.2008.00093.x DOI: https://doi.org/10.1111/j.1753-4887.2008.00093.x

Ordóñez-Morán P, Muñoz A. Nuclear receptors: genomic and non-genomic effects converge. Cell Cycle. 2009; 8(11):1675-80. https://doi.org/10.4161/cc.8.11.8579 DOI: https://doi.org/10.4161/cc.8.11.8579

Chou W-C, Prokova V, Shiraishi K, Valcourt U, Moustakas A, Hadzopoulou-Cladaras M, Zannis VI, Kardassis D. Mechanism of a transcriptional cross talk between transforming growth factor-β–regulated Smad3 and Smad4 proteins and orphan nuclear receptor hepatocyte nuclear factor-4. Mol Biol Cell. 2003; 14(3):1279-94. https://doi. org/10.1091/mbc.e02-07-0375 DOI: https://doi.org/10.1091/mbc.e02-07-0375

Ryffel G. Mutations in the human genes encoding the transcription factors of the Hepatocyte Nuclear Factor (HNF)1 and HNF4 Families: Functional and pathological consequences. J Mol Endocrinol. 2001; 27(1):11-29. https:// doi.org/10.1677/jme.0.0270011 DOI: https://doi.org/10.1677/jme.0.0270011

Wang XX, Jiang T, Shen Y, Adorini L, Pruzanski M, Gonzalez FJ, Scherzer P, Lewis L, Miyazaki-Anzai S, Levi M. The Farnesoid X receptor modulates renal lipid metabolism and diet-induced renal inflammation, fibrosis, and proteinuria. Am J Physiol Physiol. 2009; 297(6):F1587-96. https://doi.org/10.1152/ajprenal.00404.2009 DOI: https://doi.org/10.1152/ajprenal.00404.2009

Tsan M-F, Gao B. Endogenous ligands of toll-like receptors. J Leukoc Biol. 2004; 76(3):514-9. https://doi.org/10.1189/ jlb.0304127

Akira S, Takeda K. Toll-like receptor signalling. Nat Rev Immunol. 2004; 4(7):499-511. https://doi.org/10.1038/ nri1391 DOI: https://doi.org/10.1038/nri1391

Oeckinghaus A, Hayden MS, Ghosh S. Crosstalk in NF-ΚB signaling pathways. Nat Immunol. 2011; 12(8):695-708. https://doi.org/10.1038/ni.2065 DOI: https://doi.org/10.1038/ni.2065

Küper C, Beck F-X, Neuhofer W. Toll-like receptor 4 activates NF-ΚB and MAP kinase Pathways to regulate expression of proinflammatory COX-2 in renal medullary collecting duct cells. Am J Physiol Physiol. 2012; 302(1):F38- 46. https://doi.org/10.1152/ajprenal.00590.2010 DOI: https://doi.org/10.1152/ajprenal.00590.2010

Mezzano S, Aros C, Droguett A, Burgos ME, Ardiles L, Flores C, Schneider H, Ruiz-Ortega M, Egido J. NF- B activation and overexpression of regulated genes in human diabetic nephropathy. Nephrol Dial Transplant. 2004; 19(10):2505-12. https://doi.org/10.1093/ndt/gfh207 DOI: https://doi.org/10.1093/ndt/gfh207

Pillarisetti S, Saxena U. Role of oxidative stress and inflammation in the origin of type 2 diabetes - A paradigm shift. Expert Opin Ther Targets. 2004; 8(5):401-8. https://doi.org/10.1517/14728222.8.5.401 DOI: https://doi.org/10.1517/14728222.8.5.401

Devaraj S, Tobias P, Kasinath BS, Ramsamooj R, Afify A, Jialal I. Knockout of toll-like receptor-2 attenuates both the proinflammatory state of diabetes and incipient diabetic nephropathy. Arterioscler Thromb Vasc Biol. 2011; 31(8):1796-804. https://doi.org/10.1161/ ATVBAHA.111.228924 DOI: https://doi.org/10.1161/ATVBAHA.111.228924

Kanasaki K, Taduri G, Koya D. Diabetic nephropathy: The role of inflammation in fibroblast activation and kidney fibrosis. Front Endocrinol (Lausanne). 2013; 4. https://doi.org/10.3389/fendo.2013.00007 DOI: https://doi.org/10.3389/fendo.2013.00007

Lin M, Yiu WH, Li RX, Wu HJ, Wong DWL, Chan LYY, Leung JCK, Lai KN, Tang SCW. The TLR4 antagonist CRX-526 protects against advanced diabetic nephropathy. Kidney Int. 2013; 83(5):887-900. https://doi.org/10.1038/ ki.2013.11 DOI: https://doi.org/10.1038/ki.2013.11

Cha JJ, Hyun YY, Lee MH, Kim JE, Nam DH, Song HK, Kang YS, Lee JE, Kim HW, Han JY, Cha DR. Renal protective effects of toll-like receptor 4 signaling blockade in type 2 diabetic mice. Endocrinology. 2013; 154(6):2144- 55. https://doi.org/10.1210/en.2012-2080 DOI: https://doi.org/10.1210/en.2012-2080

Holland WL, Bikman BT, Wang L-P, Yuguang G, Sargent KM, Bulchand S, Knotts TA, Shui G, Clegg DJ, Wenk MR, Pagliassotti MJ, Scherer PE, Summers SA. Lipid-induced insulin resistance mediated by the proinflammatory receptor TLR4 requires saturated fatty acid-induced ceramide biosynthesis in mice. J Clin Invest. 2011; 121(5):1858-70. https://doi.org/10.1172/JCI43378 DOI: https://doi.org/10.1172/JCI43378

Wu D, Peng F, Zhang B, Ingram AJ, Kelly DJ, Gilbert RE, Gao B, Krepinsky JC. PKC-Β1 mediates glucose-induced Akt activation and TGF-Β1 upregulation in mesangial cells. J Am Soc Nephrol. 2009; 20(3):554-66. https://doi. org/10.1681/ASN.2008040445 DOI: https://doi.org/10.1681/ASN.2008040445

Tominaga T, Abe H, Ueda O, Goto C, Nakahara K, Murakami T, Matsubara T, Mima A, Nagai K, Araoka T, Kishi S, Fukushima N, Jishage K, Doi T. Activation of bone morphogenetic protein 4 signaling leads to glomerulosclerosis that mimics diabetic nephropathy. J Biol Chem. 2011; 286(22):20109-16. https://doi.org/10.1074/ jbc.M110.179382 DOI: https://doi.org/10.1074/jbc.M110.179382

Tang LQ, Liu S, Zhang ST, Zhu LN, Wang FL. Berberine regulates the expression of E-prostanoid receptors in diabetic rats with nephropathy. Mol Biol Rep. 2014; 41(5):3339-47. https://doi.org/10.1007/s11033-014-3196-4 DOI: https://doi.org/10.1007/s11033-014-3196-4

Thibodeau J-F, Nasrallah R, Carter A, He Y, Touyz R, Hébert RL, Kennedy CRJ. PTGER1 deletion attenuates renal injury in diabetic mouse models. Am J Pathol. 2013; 183(6):1789- 802. https://doi.org/10.1016/j.ajpath.2013.08.022 DOI: https://doi.org/10.1016/j.ajpath.2013.08.022

Makino H, Tanaka I, Mukoyama M, Sugawara A, Mori K, Muro S, Suganami T, Yahata K, Ishibashi R, Ohuchida S, Maruyama T, Narumiya S, Nakao K. Prevention of diabetic nephropathy in rats by prostaglandin E receptor EP1- selective antagonist. J Am Soc Nephrol. 2002; 13(7):1757-65. https://doi.org/10.1097/01.ASN.0000019782.37851.BF DOI: https://doi.org/10.1097/01.ASN.0000019782.37851.BF

Quezada C, Alarcon S, Jaramillo C, Munoz D, Oyarzun C, San Martin R. Targeting adenosine signaling to treatment of diabetic nephropathy. Curr Drug Targets. 2013; 14(4):490- 6. https://doi.org/10.2174/1389450111314040010 DOI: https://doi.org/10.2174/1389450111314040010

Eisenstein A, Ravid K. G protein-coupled receptors and adipogenesis: A focus on adenosine receptors. J Cell Physiol. 2014; 229(4):414-21. https://doi.org/10.1002/jcp.24473 DOI: https://doi.org/10.1002/jcp.24473

Schrijvers BF, De Vriese AS, Tilton RG, Van De Voorde J, Denner L, Lameire NH, Flyvbjerg A. Inhibition of Vascular Endothelial Growth Factor (VEGF) does not affect early renal changes in a rat model of lean type 2 diabetes. Horm Metab Res. 2005; 37(1):21-5. https://doi. org/10.1055/s-2005-861027 DOI: https://doi.org/10.1055/s-2005-861027

Lan HY, Chung AC-K. TGF-β/Smad signaling in kidney disease. Semin Nephrol. 2012; 32(3):236-43. https://doi. org/10.1016/j.semnephrol.2012.04.002 DOI: https://doi.org/10.1016/j.semnephrol.2012.04.002

Awad AS, Rouse M, Liu L, Vergis AL, Rosin DL, Linden J, Sedor JR, Okusa MD. Activation of adenosine 2A receptors preserves structure and function of podocytes. J Am Soc Nephrol. 2008; 19(1):59-68. https://doi.org/10.1681/ ASN.2007030276 DOI: https://doi.org/10.1681/ASN.2007030276

Yang J, Zeng Z, Wu T, Yang Z, Liu B, Lan T. Emodin attenuates high glucose-induced TGF-Β1 and fibronectin expression in mesangial cells through inhibition of NF-ΚB pathway. Exp Cell Res. 2013; 319(20):3182-9. https://doi. org/10.1016/j.yexcr.2013.10.006 DOI: https://doi.org/10.1016/j.yexcr.2013.10.006

Kohan DE. Endothelin, hypertension and chronic kidney disease: New insights. Curr Opin Nephrol 36. Tsan M-F, Gao B. Endogenous ligands of toll-like receptors. J Leukoc Biol. 2004; 76(3):514-9. https://doi.org/10.1189/ jlb.0304127 DOI: https://doi.org/10.1189/jlb.0304127

Lenoir O, Milon M, Virsolvy A, Hénique C, Schmitt A, Massé J-M, Kotelevtsev Y, Yanagisawa M, Webb DJ, Richard S, Tharaux P-L. Direct action of endothelin-1 on podocytes promotes diabetic glomerulosclerosis. J Am Soc Nephrol. 2014; 25(5):1050-62. https://doi.org/10.1681/ ASN.2013020195 DOI: https://doi.org/10.1681/ASN.2013020195

Horinouchi T, Terada K, Higashi T, Miwa S. Endothelin receptor signaling: New insight into its regulatory mechanisms. J Pharmacol Sci. 2013; 123(2):85-101. https:// doi.org/10.1254/jphs.13R02CR DOI: https://doi.org/10.1254/jphs.13R02CR

Miura S, Imaizumi S, Saku K. Recent progress in molecular mechanisms of angiotensin II type 1 and 2 receptors. Curr Pharm Des. 2013; 19(17):2981-7. https://doi. org/10.2174/1381612811319170002 DOI: https://doi.org/10.2174/1381612811319170002

Müller-Fielitz H, Landolt J, Heidbreder M, Werth S, Vogt FM, Jöhren O, Raasch W. Improved insulin sensitivity after long-term treatment with AT1 blockers is not associated with PPARγ target gene regulation. Endocrinology. 2012; 153(3):1103-15. https://doi.org/10.1210/en.2011-0183 DOI: https://doi.org/10.1210/en.2011-0183

Jenkin KA, Verty ANA, McAinch AJ, Hryciw DH. Endocannabinoids and the renal proximal tubule: An emerging role in diabetic nephropathy. Int J Biochem Cell Biol. 2012; 44(11):2028-31. https://doi.org/10.1016/j. biocel.2012.07.008 DOI: https://doi.org/10.1016/j.biocel.2012.07.008

Nam DH, Lee MH, Kim JE, Song HK, Kang YS, Lee JE, Kim HW, Cha JJ, Hyun YY, Kim SH, Han SY, Han KH, Han JY, Cha DR. Blockade of cannabinoid receptor 1 improves insulin resistance, lipid metabolism, and diabetic nephropathy in Db/Db mice. Endocrinology. 2012; 153(3):1387-96. https://doi.org/10.1210/en.2011-1423 DOI: https://doi.org/10.1210/en.2011-1423

Lim SK, Park SH. The high glucose-induced stimulation of B1R and B2R expression via CB1R activation is involved in rat podocyte apoptosis. Life Sci. 2012; 91(19-20):895-906. https://doi.org/10.1016/j.lfs.2012.07.020 DOI: https://doi.org/10.1016/j.lfs.2012.07.020

Barutta F, Corbelli A, Mastrocola R, Gambino R, Di Marzo V, Pinach S, Rastaldi MP, Perin PC, Gruden G. Cannabinoid receptor 1 blockade ameliorates albuminuria in experimental diabetic nephropathy. Diabetes. 2010; 59(4):1046-54. https://doi.org/10.2337/db09-1336 DOI: https://doi.org/10.2337/db09-1336

Barutta F, Grimaldi S, Franco I, Bellini S, Gambino R, Pinach S, Corbelli A, Bruno G, Rastaldi MP, Aveta T, Hirsch E, Di Marzo V, Gruden G. Deficiency of cannabinoid receptor of type 2 worsens renal functional and structural abnormalities in streptozotocin-induced diabetic mice. Kidney Int. 2014; 86(5):979-90. https://doi.org/10.1038/ ki.2014.165 DOI: https://doi.org/10.1038/ki.2014.165

Borisenko O, Lukyanov V, Debergh I, Dillemans B. Costeffectiveness analysis of bariatric surgery for morbid obesity in Belgium. J Med Econ. 2018; 21(4):365-73. https://doi.org /10.1080/13696998.2017.1419958 DOI: https://doi.org/10.1080/13696998.2017.1419958

DeFronzo RA, Davidson JA, Del Prato S. The role of the kidneys in glucose homeostasis: A new path towards normalizing glycaemia. Diabetes, Obes Metab. 2012; 14(1): 5-14. https://doi.org/10.1111/j.1463-1326.2011.01511.x DOI: https://doi.org/10.1111/j.1463-1326.2011.01511.x

Filippatos TD, Elisaf MS. Effects of glucagon-like peptide-1 receptor agonists on renal function. World J Diabetes. 2013; 4(5):190. https://doi.org/10.4239/wjd.v4.i5.190 DOI: https://doi.org/10.4239/wjd.v4.i5.190

Fujita H, Morii T, Fujishima H, Sato T, Shimizu T, Hosoba M, Tsukiyama K, Narita T, Takahashi T, Drucker DJ, Seino Y, Yamada Y. The protective roles of GLP-1R signaling in diabetic nephropathy: Possible mechanism and therapeutic potential. Kidney Int. 2014; 85(3):579-89. https://doi. org/10.1038/ki.2013.427 DOI: https://doi.org/10.1038/ki.2013.427

Avogaro A, Schernthaner G. Achieving glycemic control in patients with type 2 diabetes and renal impairment. Acta Diabetol. 2013; 50(3):283-91. https://doi.org/10.1007/ s00592-012-0442-x DOI: https://doi.org/10.1007/s00592-012-0442-x

Ojima A, Ishibashi Y, Matsui T, Maeda S, Nishino Y, Takeuchi M, Fukami K, Yamagishi S. Glucagon-like peptide-1 receptor agonist inhibits asymmetric dimethylarginine generation in the kidney of streptozotocin-induced diabetic rats by blocking advanced glycation end product-induced protein arginine methyltranferase-1 expression. Am J Pathol. 2013; 182(1):132- 41. https://doi.org/10.1016/j.ajpath.2012.09.016 DOI: https://doi.org/10.1016/j.ajpath.2012.09.016

Sinclair P, Docherty N, le Roux CW. Metabolic effects of bariatric surgery. Clin Chem. 2018; 64(1):72-81. https://doi. org/10.1373/clinchem.2017.272336 DOI: https://doi.org/10.1373/clinchem.2017.272336

Wei L, Xiao Y, Li L, Xiong X, Han Y, Zhu X, Sun L. The susceptibility genes in diabetic nephropathy. Kidney Dis. 2018; 4(4):226-37. https://doi.org/10.1159/000492633 DOI: https://doi.org/10.1159/000492633

Fisman EZ, Tenenbaum A. Adiponectin: A manifold therapeutic target for metabolic syndrome, diabetes, and coronary disease? Cardiovasc Diabetol. 2014; 13(1):103. https://doi.org/10.1186/1475-2840-13-103 DOI: https://doi.org/10.1186/1475-2840-13-103

Iwata M, Maeda S, Kamura Y, Takano A, Kato H, Murakami S, Higuchi K, Takahashi A, Fujita H, Hara K, Kadowaki T, Tobe K. Genetic risk score constructed using 14 susceptibility alleles for type 2 diabetes is associated with the early onset of diabetes and may predict the future requirement of insulin injections among japanese individuals. Diabetes Care. 2012; 35(8):1763-70. https:// doi.org/10.2337/dc11-2006 DOI: https://doi.org/10.2337/dc11-2006

Agius L. Hormonal and metabolite regulation of hepatic glucokinase. Annu Rev Nutr. 2016; 36(1):389-415. https:// doi.org/10.1146/annurev-nutr-071715-051145 DOI: https://doi.org/10.1146/annurev-nutr-071715-051145

Poy F, Lepourcelet M, Shivdasani RA, Eck MJ. Structure of a human Tcf4-Beta-Catenin complex. Nat Struct Biol. 2001; 8(12):1053-7. https://doi.org/10.1038/nsb720 DOI: https://doi.org/10.1038/nsb720

Sivaskandarajah GA, Jeansson M, Maezawa Y, Eremina V, Baelde HJ, Quaggin SE. Vegfa protects the glomerular microvasculature in diabetes. Diabetes. 2012; 61(11):2958- 66. https://doi.org/10.2337/DB11-1655 DOI: https://doi.org/10.2337/DB11-1655

Khalili H, Sull A, Sarin S, Boivin FJ, Halabi R, Svajger B, Li A, Cui VW, Drysdale T, Bridgewater D. Developmental origins for kidney disease due to shroom3 deficiency. J Am Soc Nephrol. 2016; 27(10):2965-73. https://doi. org/10.1681/ASN.2015060621 DOI: https://doi.org/10.1681/ASN.2015060621

Park D, Tosello-Trampont A-C, Elliott MR, Lu M, Haney LB, Ma Z, Klibanov AL, Mandell JW, Ravichandran KS. BAI1 is an engulfment receptor for apoptotic cells upstream of the ELMO/Dock180/Rac module. Nature. 2007; 450(7168):430-4. https://doi.org/10.1038/nature06329 DOI: https://doi.org/10.1038/nature06329

Zhou T-B, Jiang Z-P, Qin Y-H, Drummen GP. Association of transforming growth factor-Β1 T869C gene polymorphism with diabetic nephropathy risk. Nephrology. 2014; 19(2):107-15. https://doi.org/10.1111/nep.12176 DOI: https://doi.org/10.1111/nep.12176

Wang Y, Peng W, Zhang X, Qiao H, Wang L, Xu Z, Wu C. The association of ACE gene polymorphism with diabetic kidney disease and renoprotective efficacy of valsartan. J Renin-Angiotensin-Aldosterone Syst. 2016; 17(3):147032031666674. https://doi. org/10.1177/1470320316666749 DOI: https://doi.org/10.1177/1470320316666749

Brenner BM, Cooper ME, de Zeeuw D, Keane WF, Mitch WE, Parving H-H, Remuzzi G, Snapinn SM, Zhang Z, Shahinfar S. Effects of losartan on renal and cardiovascular outcomes in patients with type 2 diabetes and nephropathy. N Engl J Med. 2001; 345(12):861-9. https://doi.org/10.1056/ NEJMoa011161 DOI: https://doi.org/10.1056/NEJMoa011161

Mussap M, Vestra MD, Fioretto P, Saller A, Varagnolo M, Nosadini R, Plebani M. Cystatin C is a more sensitive marker than creatinine for the estimation of GFR in type 2 diabetic patients. Kidney Int. 2002; 61(4):1453-61. https:// doi.org/10.1046/j.1523-1755.2002.00253.x DOI: https://doi.org/10.1046/j.1523-1755.2002.00253.x

Hong CY, Chia KS. Markers of diabetic nephropathy. J Diabetes Complications. 1998; 12(1):43-60. https://doi. org/10.1016/S1056-8727(97)00045-7 DOI: https://doi.org/10.1016/S1056-8727(97)00045-7

Stevens LA, Coresh J, Schmid CH, Feldman HI, Froissart M, Kusek J, Rossert J, Van Lente F, Bruce RD, Zhang YL, Greene T, Levey AS. Estimating GFR using serum cystatin C alone and in combination with serum creatinine: A pooled analysis of 3,418 individuals with CKD. Am J Kidney Dis. 2008; 51(3):395-406. https://doi.org/10.1053/j. ajkd.2007.11.018 DOI: https://doi.org/10.1053/j.ajkd.2007.11.018

Kazumi T, Hozumi T, Ishida Y, Ikeda Y, Kishi K, Hayakawa M, Yoshino G. Increased urinary transferrin excretion predicts microalbuminuria in patients with type 2 diabetes. Diabetes Care. 1999; 22(7):1176-80. https://doi. org/10.2337/diacare.22.7.1176 DOI: https://doi.org/10.2337/diacare.22.7.1176

Narita T, Sasaki H, Hosoba M, Miura T, Yoshioka N, Morii T, Shimotomai T, Koshimura J, Fujita H, Kakei M, Ito S. Parallel increase in urinary excretion rates of immunoglobulin G, ceruloplasmin, transferrin, and orosomucoid in normoalbuminuric type 2 diabetic patients. Diabetes Care. 2004; 27(5):1176-81. https://doi. org/10.2337/diacare.27.5.1176 DOI: https://doi.org/10.2337/diacare.27.5.1176

Massey JT, Drake RA, Georgopoulos AP. Cognitive spatialmotor processes. Exp Brain Res. 1991; 83(2):446-52. https:// doi.org/10.1007/BF00231171 DOI: https://doi.org/10.1007/BF00231171

Mauer SM, Chavers BM, Steffes MW. Should there be an expanded role for kidney biopsy in the management of patients with type I diabetes? Am J Kidney Dis. 1990; 16(2):96-100. https://doi.org/10.1016/S0272- 6386(12)80561-0 DOI: https://doi.org/10.1016/S0272-6386(12)80561-0

Kramer HJ. Renal insufficiency in the absence of albuminuria and retinopathy among adults with type 2 diabetes mellitus. JAMA. 2003; 289(24):3273. https://doi. org/10.1001/jama.289.24.3273 DOI: https://doi.org/10.1001/jama.289.24.3273

Narita T, Fujita H, Koshimura J, Meguro H, Kitazato H, Shimotomai T, Kagaya E, Suzuki K, Murata M, Usami A, Ito S. Glycemic control reverses increases in urinary excretions of immunoglobulin G and ceruloplasmin in type 2 diabetic patients with normoalbuminuria. Horm Metab Res. 2001; 33(6):370-8. https://doi.org/10.1055/s-2001-15415 DOI: https://doi.org/10.1055/s-2001-15415

Ozata M, Kurt I, Azal O, Bolu E, Corakci A, Beyhan Z, Karaca L, Gündogan MA. Can we use plasma fibronectin levels as a marker for early diabetic nephropathy. Endocr J. 1995; 42(2):301-5. https://doi.org/10.1507/endocrj.42.301 DOI: https://doi.org/10.1507/endocrj.42.301

Bolignano D, Donato V, Coppolino G, Campo S, Buemi A, Lacquaniti A, Buemi M. Neutrophil Gelatinase-Associated Lipocalin (NGAL) as a marker of kidney damage. Am J Kidney Dis. 2008; 52(3):595-605. https://doi.org/10.1053/j. ajkd.2008.01.020 DOI: https://doi.org/10.1053/j.ajkd.2008.01.020

Yang Y-H, He X-J, Chen S-R, Wang L, Li E-M, Xu L-Y. Changes of serum and urine neutrophil gelatinaseassociated lipocalin in type-2 diabetic patients with nephropathy: One year observational follow-up study. Endocrine. 2009; 36(1):45-51. https://doi.org/10.1007/ s12020-009-9187-x DOI: https://doi.org/10.1007/s12020-009-9187-x

Nielsen SE, Schjoedt KJ, Astrup AS, Tarnow L, Lajer M, Hansen PR, Parving H-H, Rossing P. Neutrophil Gelatinase- Associated Lipocalin (NGAL) and Kidney Injury Molecule 1 (KIM1) in patients with diabetic nephropathy: A crosssectional study and the effects of lisinopril. Diabet Med. 2010; 27(10):1144-50. https://doi.org/10.1111/j.1464- 5491.2010.03083.x DOI: https://doi.org/10.1111/j.1464-5491.2010.03083.x

Bolignano D, Lacquaniti A, Coppolino G, Donato V, Fazio MR, Nicocia G, Buemi M. Neutrophil gelatinase-associated lipocalin as an early biomarker of nephropathy in diabetic patients. Kidney Blood Press Res. 2009; 32(2):91-8. https:// doi.org/10.1159/000209379 DOI: https://doi.org/10.1159/000209379

Fu W-J, Li B-L, Wang S-B, Chen M-L, Deng R-T, Ye C-Q, Liu L, Fang A-J, Xiong S-L, Wen S, Tang H-H, Chen Z-X, Huang Z-H, Peng L-F, Zheng L, Wang Q. Changes of the tubular markers in type 2 diabetes mellitus with glomerular hyperfiltration. Diabetes Res Clin Pract. 2012; 95(1):105- 9. https://doi.org/10.1016/j.diabres.2011.09.031 DOI: https://doi.org/10.1016/j.diabres.2011.09.031

Nielsen SE, Reinhard H, Zdunek D, Hess G, Gutiérrez OM, Wolf M, Parving H-H, Jacobsen PK, Rossing P. Tubular markers are associated with decline in kidney function in proteinuric type 2 diabetic patients. Diabetes Res Clin Pract. 2012; 97(1):71-6. https://doi.org/10.1016/j.diabres.2012.02.007 DOI: https://doi.org/10.1016/j.diabres.2012.02.007

Conway BR, Manoharan D, Manoharan D, Jenks S, Dear JW, McLachlan S, Strachan MWJ, Price JF. Measuring urinary tubular biomarkers in type 2 diabetes does not add prognostic value beyond established risk factors. Kidney Int. 2012; 82(7):812-8. https://doi.org/10.1038/ki.2012.218 DOI: https://doi.org/10.1038/ki.2012.218

van Timmeren M, van den Heuvel M, Bailly V, Bakker S, van Goor H, Stegeman C. Tubular Kidney Injury Molecule-1 (KIM-1) in human renal disease. J Pathol. 2007; 212(2):209-17. https://doi.org/10.1002/path.2175 DOI: https://doi.org/10.1002/path.2175

Vaidya VS, Niewczas MA, Ficociello LH, Johnson AC, Collings FB, Warram JH, Krolewski AS, Bonventre JV. Regression of microalbuminuria in type 1 diabetes is associated with lower levels of urinary tubular injury biomarkers, kidney injury molecule-1, and N-Acetyl- β-D-Glucosaminidase. Kidney Int. 2011; 79(4):464-70. https://doi.org/10.1038/ki.2010.404 DOI: https://doi.org/10.1038/ki.2010.404

Nielsen SE, Andersen S, Zdunek D, Hess G, Parving H-H, Rossing P. Tubular markers do not predict the decline in glomerular filtration rate in type 1 diabetic patients with overt nephropathy. Kidney Int. 2011; 79(10):1113-8. https://doi.org/10.1038/ki.2010.554 DOI: https://doi.org/10.1038/ki.2010.554

Nielsen SE, Rossing K, Hess G, Zdunek D, Jensen BR, Parving H-H, Rossing P. The effect of RAAS blockade on markers of renal tubular damage in diabetic nephropathy: U-NGAL, u-KIM1 and u-LFABP. Scand J Clin Lab Invest. 2012; 72(2):137-42. https://doi.org/10.3109/00365513.20 11.645055 DOI: https://doi.org/10.3109/00365513.2011.645055

Uslu S, Efe B, Alatas O, Kebapci N, Colak O, Demirustu C, et al. Serum cystatin C and urinary enzymes as screening markers of renal dysfunction in diabetic patients. J Nephrol. 2005; 18(5):559-67.

Widstam-Attorps U, Berg U. Urinary protein excretion and renal function in young people with diabetes mellitus. Nephrol Dial Transplant. 1992; 7(6):487-92.

Kern EFO, Erhard P, Sun W, Genuth S, Weiss MF. Early urinary markers of diabetic kidney disease: A nested case-control study from the Diabetes Control and Complications Trial (DCCT). Am J Kidney Dis. 2010; 55(5):824-34. https://doi.org/10.1053/j.ajkd.2009.11.009 DOI: https://doi.org/10.1053/j.ajkd.2009.11.009

Hong CY, Chia KS, Ling SL. Urinary protein excretion in type 2 diabetes with complications. J Diabetes Complications. 2000; 14(5):259-65. https://doi. org/10.1016/S1056-8727(00)00119-7 DOI: https://doi.org/10.1016/S1056-8727(00)00119-7

Yoshikawa R, Wada J, Seiki K, Matsuoka T, Miyamoto S, Takahashi K, Ota S, Taniai K, Hida K, Yamakado M, Shikata K, Uehara Y, Urade Y, Makino H. Urinary PGDS levels are associated with vascular injury in type 2 diabetes patients. Diabetes Res Clin Pract. 2007; 76(3):358-67. https://doi.org/10.1016/j.diabres.2006.09.004 DOI: https://doi.org/10.1016/j.diabres.2006.09.004

Weitgasser R, Schnoell F, Gappmayer B, Kartnig I. Prospective evaluation of urinary N-Acetyl-Beta-DGlucosaminidase with Respect to macrovascular disease in elderly type 2 diabetic patients. Diabetes Care. 1999; 22(11):1882-6. https://doi.org/10.2337/diacare.22.11.1882 DOI: https://doi.org/10.2337/diacare.22.11.1882

Maatman RGHJ, van de Westerlo EMA, van Kuppevelt THMSM, Veerkamp JH. Molecular identification of the liver- and the heart-type fatty acid-binding proteins in human and rat kidney. Use of the reverse transcriptase polymerase chain reaction. Biochem J. 1992; 288(1):285- 90. https://doi.org/10.1042/bj2880285 DOI: https://doi.org/10.1042/bj2880285

Koh KTC, Chia KS, Tan C. Proteinuria and enzymuria in non-insulin-dependent diabetics. Diabetes Res Clin Pract. 1993: 20(3):215-21. https://doi.org/10.1016/0168- 8227(93)90081-F DOI: https://doi.org/10.1016/0168-8227(93)90081-F

Penders J, Delanghe JR. Alpha 1-microglobulin: Clinical laboratory aspects and applications. Clin Chim Acta. 2004; 346(2):107-18. https://doi.org/10.1016/j.cccn.2004.03.037 DOI: https://doi.org/10.1016/j.cccn.2004.03.037

Kalansooriya A, Holbrook I, Jennings P, Whiting PH. Serum cystatin C, enzymuria, tubular proteinuria and early renal insult in type 2 diabetes. Br J Biomed Sci. 2007; 64(3):121-3. https://doi.org/10.1080/09674845.2007.11732770 DOI: https://doi.org/10.1080/09674845.2007.11732770

Hong C-Y, Hughes K, Chia K-S, Ng V, Ling S-L. Urinary Α1-microglobulin as a marker of nephropathy in type 2 diabetic asian subjects in Singapore. Diabetes Care. 2003; 26(2):338-42. https://doi.org/10.2337/diacare.26.2.338 DOI: https://doi.org/10.2337/diacare.26.2.338

Martin P, Hampton KK, Walton C, Tindall H, Davies JA. Microproteinuria in type 2 diabetes mellitus from diagnosis. Diabet Med. 1990; 7(4):315-8. https://doi. org/10.1111/j.1464-5491.1990.tb01396.x DOI: https://doi.org/10.1111/j.1464-5491.1990.tb01396.x

Holm J, Nielsen NV, Hemmingsen L. Retinopathy in type II diabetes mellitus associated with above-normal urinary excretion of RBP. Kidney Int Suppl. 1994; 47:S105-8.

Tillyer CR. Clinical applications of immunoglobulin free light chain estimations. Int J Clin Lab Res. 1993; 23(1– 4):25-9. https://doi.org/10.1007/BF02592276 DOI: https://doi.org/10.1007/BF02592276

Nishikawa T, Edelstein D, Brownlee M. The Missing link: a single unifying mechanism for diabetic complications. Kidney Int. 2000; 58:S26-30. https://doi.org/10.1046/ j.1523-1755.2000.07705.x DOI: https://doi.org/10.1046/j.1523-1755.2000.07705.x

Cooke MS, Evans MD, Herbert KE, Lunec J. Urinary 8-Oxo-2'-Deoxyguanosine - source, significance and supplements. Free Radic Res. 2000; 32(5):381-97. https:// doi.org/10.1080/10715760000300391 DOI: https://doi.org/10.1080/10715760000300391

Wu LL, Chiou C-C, Chang P-Y, Wu JT. Urinary 8-OHdG: A marker of oxidative stress to DNA and a risk factor for cancer, atherosclerosis and diabetics. Clin Chim Acta. 2004; 339(1–2):1-9. https://doi.org/10.1016/j. cccn.2003.09.010 DOI: https://doi.org/10.1016/j.cccn.2003.09.010

Hinokio Y, Suzuki S, Hirai M, Suzuki C, Suzuki M, Toyota T. Urinary excretion of 8-Oxo-7, 8-Dihydro-2'- Deoxyguanosine as a predictor of the development of diabetic nephropathy. Diabetologia. 2002; 45(6):877-82. https://doi.org/10.1007/s00125-002-0831-8 DOI: https://doi.org/10.1007/s00125-002-0831-8

Hinokio Y, Suzuki S, Hirai M, Chiba M, Hirai A, Toyota T. Oxidative DNA damage in diabetes mellitus: its association with diabetic complications. Diabetologia. 1999; 42(8):995-8. https://doi.org/10.1007/s001250051258 DOI: https://doi.org/10.1007/s001250051258

Beisswenger PJ, Drummond KS, Nelson RG, Howell SK, Szwergold BS, Mauer M. Susceptibility to diabetic nephropathy is related to dicarbonyl and oxidative stress. Diabetes. 2005; 54(11):3274-81. https://doi.org/10.2337/ diabetes.54.11.3274 DOI: https://doi.org/10.2337/diabetes.54.11.3274

Ghanem AA, Elewa A, Arafa LF. Pentosidine and N-Carboxymethyl-Lysine: Biomarkers for type 2 diabetic retinopathy. Eur J Ophthalmol. 2011; 21(1):48-54. https:// doi.org/10.5301/EJO.2010.4447 DOI: https://doi.org/10.5301/EJO.2010.4447

Daimon M, Sugiyama K, Kameda W, Saitoh T, Oizumi T, Hirata A, Yamaguchi H, Ohnuma H, Igarashi M, Kato T. Increased urinary levels of pentosidine, pyrraline and acrolein adduct in type 2 diabetes. Endocr J. 2003; 50(1):61-7. https://doi.org/10.1507/endocrj.50.61 DOI: https://doi.org/10.1507/endocrj.50.61

Calabrese V, Mancuso C, Sapienza M, Puleo E, Calafato S, Cornelius C, Finocchiaro M, Mangiameli A, Di Mauro M, Stella AMG, Castellino P. Oxidative stress and cellular stress response in diabetic nephropathy. Cell Stress Chaperones. 2007; 12(4):299-306. https://doi. org/10.1379/CSC-270.1 DOI: https://doi.org/10.1379/CSC-270.1

Kerkeni M, Saïdi A, Bouzidi H, Letaief A, Ben Yahia S, Hammami M. Pentosidine as a biomarker for microvascular complications in type 2 diabetic patients. Diabetes Vasc Dis Res. 2013; 10(3):239-45. https://doi. org/10.1177/1479164112460253 DOI: https://doi.org/10.1177/1479164112460253

Bloomgarden ZT. Inflammation and insulin resistance. Diabetes Care. 2003; 26(6):1922-6. https://doi. org/10.2337/diacare.26.6.1922 DOI: https://doi.org/10.2337/diacare.26.6.1922

Fournier T, Medjoubi-NN, Porquet D. Alpha-1-acid glycoprotein. Biochim Biophys Acta - Protein Struct Mol Enzymol. 2000; 1482(1–2):157-71. https://doi. org/10.1016/S0167-4838(00)00153-9 DOI: https://doi.org/10.1016/S0167-4838(00)00153-9

Pickup JC, Mattock MB, Chusney GD, Burt D. NIDDM as a disease of the innate immune system: Association of acute-phase reactants and interleukin-6 with metabolic syndrome X. Diabetologia. 1997; 40(11):1286-92. https:// doi.org/10.1007/s001250050822 DOI: https://doi.org/10.1007/s001250050822

Schmidt MI, Duncan BB, Sharrett AR, Lindberg G, Savage PJ, Offenbacher S, Azambuja MI, Tracy RP, Heiss G. Markers of Inflammation and prediction of diabetes mellitus in adults (atherosclerosis risk in communities study): A cohort study. Lancet. 1999; 353(9165):1649-52. https://doi.org/10.1016/S0140-6736(99)01046-6 DOI: https://doi.org/10.1016/S0140-6736(99)01046-6

Gomes MB, Nogueira VG. Acute-phase proteins and microalbuminuria among patients with type 2 diabetes. Diabetes Res Clin Pract. 2004; 66(1):31-9. https://doi. org/10.1016/j.diabres.2004.02.009 DOI: https://doi.org/10.1016/j.diabres.2004.02.009

Jiang H, Guan G, Zhang R, Liu G, Liu H, Hou X, Cheng J. Increased urinary excretion of orosomucoid is a risk predictor of diabetic nephropathy. Nephrology. 2009; 14(3):332-7. https://doi.org/10.1111/j.1440-1797.2008.01053.x DOI: https://doi.org/10.1111/j.1440-1797.2008.01053.x

Varghese SA, Powell TB, Budisavljevic MN, Oates JC, Raymond JR, Almeida JS, Arthur JM. Urine biomarkers predict the cause of glomerular disease. J Am Soc Nephrol. 2007; 18(3):913-22. https://doi.org/10.1681/ ASN.2006070767 DOI: https://doi.org/10.1681/ASN.2006070767

Shoji M. Kobayashi K, Takemoto M, Sato Y, Yokote K. Urinary podocalyxin levels were associated with urinary albumin levels among patients with diabetes. Biomarkers. 2016; 21(2):164-7. https://doi.org/10.3109/13547 50X.2015.1118551 DOI: https://doi.org/10.3109/1354750X.2015.1118551

Hara M, Yamagata K, Tomino Y, Saito A, Hirayama Y, Ogasawara S, Kurosawa H, Sekine S, Yan K. Urinary podocalyxin is an early marker for podocyte injury in patients with diabetes: establishment of a highly sensitive ELISA to detect urinary podocalyxin. Diabetologia. 2012; 55(11):2913-9. https://doi.org/10.1007/s00125-012-2661-7 DOI: https://doi.org/10.1007/s00125-012-2661-7

Zheng M, Lv L-L, Ni J, Ni H-F, Li Q, Ma K-L, Liu B-C. Urinary podocyte-associated MRNA profile in various stages of diabetic nephropathy. PLoS One. 2011; 6(5):e20431. https://doi.org/10.1371/journal.pone.0020431 DOI: https://doi.org/10.1371/journal.pone.0020431

Tuttle KR. Linking metabolism and immunology: diabetic nephropathy is an inflammatory disease. J Am Soc Nephrol. 2005; 16(6):1537-8. https://doi.org/10.1681/ ASN.2005040393 DOI: https://doi.org/10.1681/ASN.2005040393

Schlatzer D, Maahs DM, Chance MR, Dazard J-E, Li X, Hazlett F, Rewers M, Snell-Bergeon JK. Novel urinary protein biomarkers predicting the development of microalbuminuria and renal function decline in type 1 diabetes. Diabetes Care. 2012; 35(3):549-55. https://doi. org/10.2337/dc11-1491 DOI: https://doi.org/10.2337/dc11-1491

Navarro JF, Mora C, Muros M, Garcia J. Urinary tumour necrosis factor- excretion independently correlates with clinical markers of glomerular and tubulointerstitial injury in type 2 diabetic patients. Nephrol Dial Transplant. 2006; 21(12):3428-34. https://doi.org/10.1093/ndt/gfl469 DOI: https://doi.org/10.1093/ndt/gfl469

Niewczas MA, Ficociello LH, Johnson AC, Walker W, Rosolowsky ET, Roshan B, Warram JH, Krolewski AS. Serum concentrations of markers of TNFα and fasmediated pathways and renal function in nonproteinuric patients with type 1 diabetes. Clin J Am Soc Nephrol. 2009; 4(1):62-70. https://doi.org/10.2215/CJN.03010608 DOI: https://doi.org/10.2215/CJN.03010608

Gohda T, Niewczas MA, Ficociello LH, Walker WH, Skupien J, Rosetti F, Cullere X, Johnson AC, Crabtree G, Smiles AM, Mayadas TN, Warram JH, Krolewski AS. Circulating TNF receptors 1 and 2 predict stage 3 CKD in type 1 diabetes. J Am Soc Nephrol. 2012; 23(3):516-24. https://doi.org/10.1681/ASN.2011060628 DOI: https://doi.org/10.1681/ASN.2011060628

Niewczas MA, Gohda T, Skupien J, Smiles AM, Walker WH, Rosetti F, Cullere X, Eckfeldt JH, Doria A, Mayadas TN, Warram JH, Krolewski AS. Circulating TNF receptors 1 and 2 predict ESRD in type 2 diabetes. J Am Soc Nephrol. 2012; 23(3):507-15. https://doi.org/10.1681/ASN.2011060627 DOI: https://doi.org/10.1681/ASN.2011060627

Moresco RN, Sangoi MB, De Carvalho JAM, Tatsch E, Bochi GV. Diabetic nephropathy: Traditional to proteomic markers. Clin Chim Acta. 2013; 421:17-30. https://doi.org/10.1016/j.cca.2013.02.019 DOI: https://doi.org/10.1016/j.cca.2013.02.019

Dalla Vestra M, Mussap M, Gallina P, Bruseghin M, Cernigoi AM, Saller A, Plebani M, Fioretto P. Acutephase markers of inflammation and glomerular structure in patients with type 2 diabetes. J Am Soc Nephrol. 2005; 16(3 suppl 1):S78-82. https://doi.org/10.1681/ ASN.2004110961 DOI: https://doi.org/10.1681/ASN.2004110961

Goldberg RB. Cytokine and cytokine-like inflammation markers, endothelial dysfunction, and imbalanced coagulation in development of diabetes and its complications. J Clin Endocrinol Metab. 2009; 94(9):3171- 82. https://doi.org/10.1210/jc.2008-2534 DOI: https://doi.org/10.1210/jc.2008-2534

Hovind P, Tarnow L, Oestergaard PB, Parving HH. Elevated vascular endothelial growth factor in type 1 diabetic patients with diabetic nephropathy. Kidney Int Suppl. 2000; 75:S56-61. https://doi.org/10.1046/j.1523-1755.57.s75.4.x DOI: https://doi.org/10.1046/j.1523-1755.57.s75.4.x

El-Beblawy NMS, Andrawes NG, Ismail EAR, Enany BE-S, El-Seoud HAS, Erfan MA. Serum and urinary orosomucoid in young patients with type 1 diabetes. Clin Appl Thromb. 2016; 22(8):718-26. https://doi. org/10.1177/1076029616637185 DOI: https://doi.org/10.1177/1076029616637185

Christiansen MS, Hommel E, Magid E, Feldt-Rasmussen B. Orosomucoid in urine predicts cardiovascular and over-all mortality in patients with type II diabetes. Diabetologia. 2002; 45(1):115-20. https://doi.org/10.1007/ s125-002-8251-3 DOI: https://doi.org/10.1007/s125-002-8251-3

Kakkar R, Mantha SV, Radhi J, Prasad K, Kalra J. Increased oxidative stress in rat liver and pancreas during progression of streptozotocin-induced diabetes. Clin Sci. 1998; 94(6):623-32. https://doi.org/10.1042/cs0940623 DOI: https://doi.org/10.1042/cs0940623

Ahad A, Ganai AA, Mujeeb M, Siddiqui WA. Ellagic acid, an NF-ΚB inhibitor, ameliorates renal function in experimental diabetic nephropathy. Chem Biol Interact. 2014; 219:64-75. https://doi.org/10.1016/j. cbi.2014.05.011 DOI: https://doi.org/10.1016/j.cbi.2014.05.011

Zhang M, Feng L, Zhu M, Gu J, Wu C, Jia X. Antioxidative and anti-inflammatory activities of paeoniflorin and oxypaeoniflora on AGEs-induced mesangial cell damage. Planta Med. 2013; 79(14):1319-23. https://doi. org/10.1055/s-0033-1350649 DOI: https://doi.org/10.1055/s-0033-1350649

Fallahzadeh MK, Dormanesh B, Sagheb MM, Roozbeh J, Vessal G, Pakfetrat M, Daneshbod Y, Kamali-Sarvestani E, Lankarani KB. Effect of addition of silymarin to reninangiotensin system inhibitors on proteinuria in type 2 diabetic patients with overt nephropathy: A randomized, doubleblind, placebo-controlled trial. Am J Kidney Dis. 2012; 60(6):896-903. https://doi.org/10.1053/j.ajkd.2012.06.005 DOI: https://doi.org/10.1053/j.ajkd.2012.06.005

Jing D, Bai H, Yin S. Renoprotective effects of emodin against diabetic nephropathy in rat models are mediated via PI3K/Akt/GSK‑3β and Bax/Caspase‑3 signaling pathways. Exp Ther Med. 2017. https://doi.org/10.3892/ etm.2017.5131 DOI: https://doi.org/10.3892/etm.2017.5131

Gao Q, Qin W-S, Jia Z-H, Zheng J-M, Zeng C-H, Li L-S, Liu Z-H. Rhein improves renal lesion and ameliorates dyslipidemia in Db/Db mice with diabetic nephropathy. Planta Med. 2010; 76(01):27-33. https://doi. org/10.1055/s-0029-1185948 DOI: https://doi.org/10.1055/s-0029-1185948

Xu X-H, Ding D-F, Yong H-J, Dong C-L, You N, Ye X-L, Pan M-L, Ma J-H, You Q, Lu Y-B. Resveratrol transcriptionally regulates MiRNA-18a-5p expression ameliorating diabetic nephropathy via increasing autophagy. Eur Rev Med Pharmacol Sci. 2017; 21(21):4952-65.

Wu F, Li S, Zhang N, Huang W, Li X, Wang M, Bai D, Han B. Hispidulin alleviates high-glucose-induced podocyte injury by regulating protective autophagy. Biomed Pharmacother. 2018; 104:307-14. https://doi. org/10.1016/j.biopha.2018.05.017 DOI: https://doi.org/10.1016/j.biopha.2018.05.017

Ma L, Fu R, Duan Z, Lu J, Gao J, Tian L, Lv Z, Chen Z, Han J, Jia L, Wang L. Sirt1 is essential for resveratrol enhancement of hypoxia-induced autophagy in the type 2 diabetic nephropathy rat. Pathol - Res Pract. 2016; 212(4):310-8. https://doi.org/10.1016/j.prp.2016.02.001 DOI: https://doi.org/10.1016/j.prp.2016.02.001

Chowdhury S, Ghosh S, Das AK, Sil PC. Ferulic acid protects hyperglycemia-induced kidney damage by regulating oxidative insult, inflammation and autophagy. Front Pharmacol. 2019; 10. https://doi.org/10.3389/ fphar.2019.00027 DOI: https://doi.org/10.3389/fphar.2019.00027

Kandasamy N, Ashokkumar N. Renoprotective effect of myricetin restrains dyslipidemia and renal mesangial cell proliferation by the suppression of sterol regulatory element binding proteins in an experimental model of diabetic nephropathy. Eur J Pharmacol. 2014; 743:53-62. https://doi.org/10.1016/j.ejphar.2014.09.014 DOI: https://doi.org/10.1016/j.ejphar.2014.09.014

Ekor M. The growing use of herbal medicines: Issues relating to adverse reactions and challenges in monitoring safety. Front Pharmacol. 2014; 4. https://doi.org/10.3389/ fphar.2013.00177 DOI: https://doi.org/10.3389/fphar.2013.00177

Elavarasi S, Saravanan K, Renuka C. A systematic review on medicinal plants used to treat diabetes mellitus. International J Pharm Chem Biol Sci. 2013; 3(3):983-92.

Namita P, Mukesh R, Vijay K. Camellia sinensis (green tea): A rev. Glob J Pharmacol. 2012; 6(2):52-9.

Khan MS. Chemotherapeutic potential of Boerhaavia diffusa Linn: A review. J Appl Pharm Sci. 2013; 3(1):133-9.

Deepa B, Anuradha CV. Antidiabetic potential of Coriandrum sativum L. seed extract. Indian J Experimenyal Biol. 2011; 49:30-8.

Prakash O, Kumar R, Srivastava R, Tripathi P, Mishra S. Plants explored with anti-diabetic properties: A review. Am J Pharmacol Sci. 2015; 3(3):55-66.

Sendrayaperumal V, Pillai SI, Subramanian S. Design, synthesis and characterization of zinc-morin, a metal flavonol complex and evaluation of its anti-diabetic potential in HFD-STZ induced type 2 diabetes in rats. Chem-Biol Interact. 2014; 219:9-17. https://doi. org/10.1016/j.cbi.2014.05.003 DOI: https://doi.org/10.1016/j.cbi.2014.05.003

Huang XY, Fu JF, and Di DL. Preparative isolation and purification of steviol glycosides from Stevia rebaudiana bertoni using high-speed counter-current chromatography. Sep Purif Technol. 2010; 71(2):220-24. https://doi.org/10.1016/j.seppur.2009.11.025 DOI: https://doi.org/10.1016/j.seppur.2009.11.025

Baskaran K, Ahamath BK, Shanmugasundaram KR, Shanmugasundaram ERB. Antidiabetic effect of a leaf extract from Gymnema sylvestre in non-insulindependent diabetes mellitus patients. J Ethnopharmacol. 1990; 30(3):295-305. https://doi.org/10.1016/0378- 8741(90)90108-6 DOI: https://doi.org/10.1016/0378-8741(90)90108-6

Zang Y, Sato H, Igarashi K. Anti-diabetic effects of a kaempferol glycoside-rich fraction from unripe soybean (edamame, Glycine max L. Merrill. ‘Jindai’) leaves on KK- A y mice. Biosci Biotechnol Biochem. 2011; 75(9):1677-84. https://doi.org/10.1271/bbb.110168 DOI: https://doi.org/10.1271/bbb.110168

Goboza M, Meyer M, Aboua YG, Oguntibeju OO. In vitro antidiabetic and antioxidant effects of different extracts of Catharanthus roseus and its indole alkaloid, vindoline. Molecules. 2020; 25(23):5546. https://doi.org/10.3390/ molecules25235546 DOI: https://doi.org/10.3390/molecules25235546

Zhang Y, Cai J, Ruan H, Pi H, Wu J. Antihyperglycemic activity of kinsenoside, a high yielding constituent from Anoectochilus roxburghii in Streptozotocin diabetic rats. J Ethnopharmacol. 2007; 114(2):141-5. https://doi. org/10.1016/j.jep.2007.05.022 DOI: https://doi.org/10.1016/j.jep.2007.05.022

Bhatt JK, Thomas S, Nanjan MJ. Resveratrol supplementation improves glycemic control in type 2 diabetes mellitus. Nutr Res. 2012; 32(7):537-41. https:// doi.org/10.1016/j.nutres.2012.06.003 DOI: https://doi.org/10.1016/j.nutres.2012.06.003

König G, Wright A, Keller W, Judd R, Bates S, Day C. Hypoglycaemic activity of an HMG-Containing flavonoid glucoside, chamaemeloside, from chamaemelum nobile. Planta Med. 1998; 64(07):612-4. https://doi. org/10.1055/s-2006-957532 DOI: https://doi.org/10.1055/s-2006-957532

Ghosh T, Maity T, Singh J. Antihyperglycemic activity of bacosine, a triterpene from Bacopa monnieri, in alloxaninduced diabetic rats. Planta Med. 2011; 77(08):804-8. https://doi.org/10.1055/s-0030-1250600 DOI: https://doi.org/10.1055/s-0030-1250600

Muruganandan S, Srinivasan K, Gupta S, Gupta PK, Lal J. Effect of mangiferin on hyperglycemia and atherogenicity in streptozotocin diabetic rats. J Ethnopharmacol. 2005; 97(3):497-501. https://doi.org/10.1016/j.jep.2004.12.010 DOI: https://doi.org/10.1016/j.jep.2004.12.010

Potdar D, Hirwani RR, Dhulap S. Phyto-chemical and pharmacological applications of Berberis aristata. Fitoterapia 2012; 83(5):817-30. https://doi.org/10.1016/j. fitote.2012.04.012 DOI: https://doi.org/10.1016/j.fitote.2012.04.012

Zhang M, Chen M, Zhang H-Q, Sun S, Xia B, Wu F-H. In vivo hypoglycemic effects of phenolics from the root bark of Morus alba. Fitoterapia. 2009; 80(8):475-7. https://doi. org/10.1016/j.fitote.2009.06.009 DOI: https://doi.org/10.1016/j.fitote.2009.06.009

Dua TK, Sahu R, Gangopadhyay M, De Feo V, Zia-Ul-Haq M, Khanra R, Dewanjee S. Abroma augusta L. (Malvaceae) leaf extract attenuates diabetes induced nephropathy and cardiomyopathy via inhibition of oxidative stress and inflammatory response. J Transl Med. 2015; 13:6. https:// doi.org/10.1186/s12967-014-0364-1 DOI: https://doi.org/10.1186/s12967-014-0364-1

Bao L, Zhang Z, Dai X, Ding Y, Jiang Y, Li Y, Li Y. Effects of grape seed proanthocyanidin extract on renal injury in type 2 diabetic rats. Mol Med Rep. 2015; 11(1):645-52. https://doi.org/10.3892/mmr.2014.2768 DOI: https://doi.org/10.3892/mmr.2014.2768

de Pauw BE. What Are Fungal Infections? Mediterr J Hematol Infect Dis. 2011; 3(1). https://doi.org/10.4084/ mjhid.2011.001 DOI: https://doi.org/10.4084/mjhid.2011.001

Esther GS, Manonmani AJ. Molecular docking studies of ellagic acid and gallic acid in diabetic nephropathy. Int J Drug Dev Res. 2014; 6(1).

Guttula SV, Rao AA, Sridhar GR. Protein-ligand interaction analysis an insilico potential drug target identification in diabetes mellitus and nephropathy. J Bioinforma Seq Anal. 2011; 2(5):95-9.

Suganya J, Viswanathan T, Radha M, Marimuthu N. In silico molecular docking studies to investigate interactions of natural camptothecin molecule with diabetic enzymes. Res J Pharm Technol. 2017; 10(9). https://doi.org/10.5958/0974-360X.2017.00515.7 DOI: https://doi.org/10.5958/0974-360X.2017.00515.7

Shree P, Yadav D, Singh VK, Chaube R, Tripathi YB. Modulation of Mtor receptor in diabetic nephropathy by Santalin A of Lalchandan (Pterocarpus santalinus): An in-silico assessment by molecular docking. Int J Pharm Sci Res. 2019; 10(3):1115-21.

Nakamura S, Takahira K, Tanabe G, Morikawa T, Sakano M, Ninomiya K, Yoshikawa M, Muraoka O, Nakanishi I. Docking and SAR studies of salacinol derivatives as α-glucosidase inhibitors. Bioorg Med Chem Lett. 2010; 20(15):4420-3. https://doi.org/10.1016/j.bmcl.2010.06.059 DOI: https://doi.org/10.1016/j.bmcl.2010.06.059