Nutritive Benefits of Soybean (Glycine max)


  • Department of Swatha Vritta and Yoga, Bharati Vidyapeeths Deemed to be University College of Ayurved, Pune - 411 043 (M.S.))
  • Department of Swatha Vritta and Yoga, Bharati Vidyapeeths Deemed to be University College of Ayurved, Pune - 411 043 (M.S.))
  • Department of Swatha Vritta and Yoga, Bharati Vidyapeeths Deemed to be University College of Ayurved, Pune - 411 043 (M.S.))



Proteins, Isoflavones, Minerals, Vitamins, Phytoestrogen, Estrogenic Effects.


Soybean is rich in protein and can enhance the nutritional quality of food products. Now-a-days Soybeans are world’s important provider of vegetable protein and oil. Soybeans have been classified as oilseed. Soybeans are most widely grown oilseed in the world. Soybean (Glycine max) is a species of legume native to East Asia, widely grown for oil production. The article will focus on nutritive benefits of soybean. Soybean is excellent source of high quality protein, carbohydrate, dietary fiber, minerals and vitamins. It is also a good source of B complex vitamins, potassium, phosphorus, sodium and magnesium. Soybean is a rich source of phytoestrogens, especially isoflavones. Soy isoflavones are utilized for estrogen replacement therapy. The isoflavones in soybean helps to reduce LDL level. Phytoestrogens are non-steroidal plant compounds that exert estrogenic effects. It is economic and effectively meets human body requirements.


Download data is not yet available.


Metrics Loading ...


Singh, G., Ratnaparkhe, M. and Kumar, A. Comparative analysis of transposable elements from Glycine max, Cajanus cajan and Phaseolus vulgaris. J. Expl. Biol. Agricul. Sci., 2019, 7, 167-177.

Hemant S. Maheshwari, Sanjeev Kumar, Laxman Singh Rajput, Abhishek Bharti, Richa Agnihotri and DG. Soybean: Know Your beneficial and harmful microorganisms. ISSN 25827049 AgriCos e-Newsletter. 2020, 1, 35 to 37.

Rizzo, G. and Baroni, L. Health and ecological implications of fish consumption: A deeper insight. Mediterr. J. Nutr. Metab., 2016, 9, 7-22. DOI:

Marventano, S., Izquierdo Pulido, M., Sánchez-González, C., Godos, J., Speciani, A., Galvano, F. and Grosso, G. Legume consumption and CVD risk: A systematic review and meta-analysis. Pub. Healt. Nutr., 2017, 20, 245-254. [CrossRef] [PubMed]. DOI:

Jayachandran, M. and Xu, B. An insight into the health benefits of fermented soy products. Fd. Chem., 2019, 271, 362-371. DOI:

Kahraman, A. Nutritional value and foliar fertilization in soybean. J. Elementol. 2017, 22, 55-66.

Kamshybayeva, G., Atabayeva, S.D., Kenzhebayeva, S., Domakbayeva, A., Utesheva, S., Nurmahanova, A., et al. The importance of soybean (Glycine max) as a source of biologically valuable substances. Intl. J. Biol. Chem., 2017, 10, 23-27. DOI:

Garima Dukariya, Shreya Shah, Gaurav Singh and Anil Kumar. Soybean and its products: Nutritional and health benefits. J. Nut. Sci. Heal. Diet., 2020, 1, 22-29.

Srikanth, S. and Chen, Z. Plant protease inhibitors in therapeutics-focus on cancer therapy. Frontiers Pharmacol., 2016, 7, 470. DOI: Nutritional benefit of soybean and Its advancement in research [accessed Feb 10 2021].

Daily, J.W., Ko, B.S., Ryuk, J., Liu, M., Zhang, W. and Park, S. Equol decreases hot flashes in postmenopausal women: A systematic review and meta-analysis of randomized clinical trials. J. Med. Fd., 2019, 22, 127-139. DOI:

Jayachandran, M., Chandrasekaran, B. and Namasivayam, N. Geraniol attenuates oxidative stress by Nrf2 activation in diet-induced experimental atherosclerosis. J. Basic Clin. Physiol. Pharmacol., 2015, 26, 335-346. DOI:

Lee, J.H., Hwang, C.E., Son, K.S. and Cho, K.M. Comparisons of nutritional constituents in soybeans during solid state fermentation times and screening for their glucosidase enzymes and antioxidant properties. Fd. Chem., 2019, 272, 362-371. DOI:

Habtamu, A., Gasmalla, M.A.A., Yang, R.J. and Zhang, W. Bioactive peptides derived from seaweed protein and their health benefits: Antihypertensive, antioxidant and antidiabetic properties. J. Fd. Sci., 2018, 83, 6-16. DOI:

González-Montoya, M., Hernández-Ledesma, B. and Mora-Escobedo, R.M. Bioactive peptides from germinated soybean with anti-diabetic potential by inhibition of dipeptidyl peptidase-IV, β-amylase and β-glucosidase enzymes. Int. J. Mol. Sci., 2018, 19, 2883. DOI:

Wang, J., Huang, M., Yang, J., Ma, X., Zheng, S., Deng, S., Huang, Y., Yang, X. and Zhao, P. Anti-diabetic activity of stigmasterol from soybean oil by targeting the GLUT4 glucose transporter. Fd. Nutr. Res., 2017, 61, 1364117. DOI:

Veerichetty, V. Antidiabetic potential of the combination of fermented soy milk and flaxseed milk in alloxan-induced diabetic rats. Intl. J. Green Pharm., 2018, 12, 763-768.

Sathyapalan, T., Aye, M., Rigby, A.S., Fraser, W.D., Kilpatrick, E.S. and Atkin, S.L. Effect of soy on bone turn-over markers in men with type 2 diabetes and hypogonadism-a randomised controlled study. Sci. Repor., 2017, 7, 15366. DOI:

Sathyapalan, T., Aye, M., Rigby, A.S., Thatcher, N.J., Dargham, S.R., Kilpatrick, E.S., and Atkins, S.L. Soy isoflavones improve cardiovascular disease risk markers in women during the early menopause. Nutr. Metabol. Cardiovas. Dis., 2018, 28, 691-697. DOI:

Silva, H. The vascular effects of isolated isoflavones-A focus on the determinants of blood pressure regulation. Biology (Basel). 2021, 12, 49. doi: 10.3390/biology10010049. PMID: 33445531; PMCID: PMC7827317.

Jia-Liu Wei, Xin-Yan Wang, Fang-Chao Liu, Ji-Chun Chen and Jie Cao. Associations of soybean products intake with blood pressure changes and hypertension incidence: The ChinaPAR project. J. Geriatr. Cardiol., 2020, 17, 384-392.

Silva, H. The vascular effects of isolated isoflavones-A focus on the determinants of blood pressure regulation. Biol., 2021, 10, 49. DOI:

Man, B., Cui, C., Zhang, X., Sugiyama, D., Barinas-Mitchell, E. and Sekikawa, A. The effect of soy isoflavones on arterial stiffness: A systematic review and meta-analysis of randomized controlled trials. Eur. J. Nutr., 2021, 60, 603-614. DOI:

Zhao, T.T., Jin, F., Li, J.G., Xu, Y.Y., Dong, H.T., Liv, Q., Xing, P., Zhu, G.L., HU, H. and Miao, Z.F. Dietary isoflavones or isoflavone-rich food intake and breast cancer risk: A metaanalysis of prospective cohort studies. Clin. Nutr., 2019, 38, 136-145. DOI:

American Institute for Cancer Research (AICR). Soy is safe for breast cancer survivors. Available online:

American Institute for Cancer Research (AICR). Soy is safe for breast cancer survivors. Available online: (accessed on 12 February 2021).

Lima, A., Oliveira, J., Saude, F., Mota, J. and Ferreira, R.B. Proteins in soy might have a higher role in cancer prevention than previously expected: Soybean protein fractions are more effective mmp-9 inhibitors than non-protein fractions, even in cooked seeds. Nutri., 2017, 9, 201. DOI:

Itou, J., Takahashi, R., Sasanuma, H., Tsuda, M., Morimoto, S., Mastumoto, Y., Ishii, T., Sato, F., Takeda, S. and Toi, M. Estrogen induces mammary ductal dysplasia via the upregulation of Myc expression in a DNA repair-deficient condition. Sci., 2020, 23, 100821. DOI:

Chatterjee, C., Gleddie, S. and Xiao, C.W. Soybean bioactive peptides and their functional properties. Nutr., 2018, 10, 1211. DOI:

World Cancer Research Fund International (WCRF). Breast cancer survivors. Available online: (accessed on 12 February 2021).

Uifalean, A., Schneider, S., Ionescu, C., Lalk, M. and Iuga, C.A. Soy isoflavones and breast cancer cell lines: Molecular mechanisms and future perspectives. Molec., 2016, 21, 13. DOI:

Wang Yan, Liu Lijiao, Ji Fujian, Jiang Junnan, Yu Yang, Sheng Shihou, L.H. Soybean (Glycine max) prevents the progression of breast cancer cells by downregulating the level of histone demethylase JMJD5. J. Cancer Res. Ther., 2018, 14, 609-615. DOI:

Bosland, M.C., Huang, J., Schlicht, M.J., Enk, E., Xie, H. and Kato, I. Impact of 18-month soy protein supplementation on steroid hormones and serum biomarkers of angiogenesis, apoptosis, and the growth hormone/IGF-1 axis: Results of a randomized, placebo-controlled trial in males foll. Nutr. Cancer., 2021, 12, 1-12. DOI:

Reed, K.E., Camargo, J., Hamilton-Reeves, J., Kurzer, M. and Messina, M. Neither soy nor isoflavone intake affects male reproductive hormones: An expanded and updated meta-analysis of clinical studies. Reprod. Toxicol., 2021, 100, 60-67. DOI:

Sekikawa A, Higashiyama, A., Lopresti, B.J., Ihara, M., Aizenstein, H., Watanabe, M., Chang, Y., Kakuta, C., Yu, Z., Mathis, C., Kokubo, Y., Klunk, W., Lopez, O.L., Kuller, L.H., Miyamoto, Y.and Cui, C. Associations of equol-producing status with white matter lesion and amyloid-? deposition in cognitively normal elderly Japanese. Alzheimer’s Dement., 2020, 6, 12089. DOI:

Messina, M., Lynch, H., Dickinson, J.M. and Reed, K.E. No difference between the effects of supplementing with soy protein versus animal protein on gains in muscle mass and strength in response to resistance exercise. Int. J. Sport Nutr. Exerc. Metab., 2018, 28, 674-685. DOI:

Blanco Mejia, S., Messina, M., Li, S.S., Viguiliouk, E., Chiavaroli, L., Khan, T.A., Srichaikul, K., Mirrahimi, A., Seivenpiper, J.L., Etherton, P.K. and Jenkins, D.J.A. A meta-analysis of 46 studies identified by the FDA demonstrates that soy protein decreases circulating LDL and total cholesterol concentrations in adults. J. Nutr., 2019, 149, 968-981. DOI:

U.S. Department of Agriculture and U.S. Department of Health and Human Services. Dietary Guidelines for Americans, 2020-2025. 9th Edition. December 2020. Available at

Vieths, S., Reese, G., Ballmer-Weber, B.K., et al. The serum bank of EuroPrevall - the prevalence, cost and basis of food allergy across Europe. Fd. Chem. Toxicol., 2008, 46 12-14. DOI:

Patel, N., Vazquez-Ortiz, M., Lindsley, S., Cambell, D.E. and Turner, P.J. Low frequency of soya allergy in peanut-allergic children: relevance to allergen labelling on medicines. Allergy, 2018, 73, 1348-1350. DOI:

Huser, S., Guth, S., Joost, H.G., Soukup, S.T., Kohrle, J., Kreienbrock, L., Diel, P., Lachenmeier, D.W., Eisenbrand, G., Vollmer, G., Nothlings, U., Marko, D., Mally, A., Grune, T., Lehmann, L., Steinberg, P. and Kulling, S.E. Effects of isoflavones on breast tissue and the thyroid hormone system in humans: A comprehensive safety evaluation. Arch. Toxicol., 2018, 92, 2703-2748. DOI:

Otun, J., Sahebkar, A., Ostlundh, L., Atkin, S.L. and Sathyapalan, T. Systematic review and meta-analysis on the effect of soy on thyroid function. Scie. Repor., 2019, 9, 3964. DOI:

Sathyapalan, T., Dawson, A.J., Rigby, A.S, Thatcher, N.J., Kilpatrick, E.S. and Atkin, S.L. The effect of phytoestrogen on thyroid in subclinical hypothyroidism: Randomized, double blind, crossover study. Front Endocrinol (Lausanne)., 2018, 9, 531. DOI:



How to Cite

Amol, V., Bhati, K. R., & Bhati, K. R. (2021). Nutritive Benefits of Soybean (<i>Glycine max</i>). The Indian Journal of Nutrition and Dietetics, 58(4), 522–533.