Alpha-Linolenic acid: A Pharmacologically Active Ingredient from Nature

Jump To References Section

Authors

  • Department of Zoology, Babasaheb Bhimrao Ambedkar University, Lucknow - 226 025 ,IN
  • Department of Zoology, Babasaheb Bhimrao Ambedkar University, Lucknow - 226 025 ,IN
  • Department of Zoology, Babasaheb Bhimrao Ambedkar University, Lucknow - 226 025 ,IN
  • Department of Zoology, Babasaheb Bhimrao Ambedkar University, Lucknow - 226 025 ,IN

DOI:

https://doi.org/10.21048/IJND.2021.58.4.28086

Keywords:

Alpha-Linolenic Acid, Polyunsaturated Fatty Acids, Bioavailability, Metabolism, Neuroprotective, Anti-Inflammatory.
Nutrition

Abstract

Alpha-linolenic acid (ALA) is an essential omega 3 fatty acid which is mostly found in plants. ALA is not synthesized in the human body due to this reason, it should be included in diet from various sources such as flaxseed, walnut, canola oil etc. ALA is a precursor of other omega 3 fatty acids namely Eicosapentaenoic Acid (EPA) and Docosahexaenoic Acid (DHA). These two fatty acids are derived from animal sources and are documented with many health benefits. Further, various studies have evidently supported the pharmacological activities of ALA such as neuroprotective, cardioprotective, anti-inflammatory, anticancer, hepatoprotective, antioxidant and anti-diabetic. The beneficial effects of ALA can be attributed due to its bioavailability which is almost complete like other fatty acids. This review covers the pharmacological actions of ALA and its bioavailability and metabolism with the help of available literature under one roof.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Published

2021-12-10

How to Cite

Srivastava, D., Singh, V., Kumar, U., & R., V. K. (2021). Alpha-Linolenic acid: A Pharmacologically Active Ingredient from Nature. The Indian Journal of Nutrition and Dietetics, 58(4), 534–553. https://doi.org/10.21048/IJND.2021.58.4.28086

 

References

Silva, N.C.C. and Fernandes, J.A. Biological properties of medicinal plants: A review of their antimicrobial activity. The J. Ven. Anim. Toxinclud. Trop. Dis., 2010, 16, 402-413. DOI: https://doi.org/10.1590/S1678-91992010000300006

Morand, C. and Tomás-Barberán, F.A. Contribution of plant food bioactives in promoting health effects of plant foods: Why look at inter individual variability?. Eur. J. Nutr., 2019, 58, 13-19. DOI: https://doi.org/10.1007/s00394-019-02096-0

Das, U.N. Essential Fatty acids - A review.. Curr. Pharm. Biotechnol., 2006, 6, 467-82. DOI: https://doi.org/10.2174/138920106779116856

Raz, R. and Gabiz, L. Essential fatty acids and attention-deficit-hyperactivity disorder: A systematic review. Dev. Med. Child Neuro., 2009, 51, 580-592. DOI: https://doi.org/10.1111/j.1469-8749.2009.03351.x

Blondeau, N., Lipsky, R., Bourourou, M., Duncan, M.W., Gorelick, P.B. and Marini, A.M. Alphalinolenic acid: An omega-3 fatty acid with neuroprotective properties GÇö ready for use in the stroke clinic?. Biomed. Res. Int., 2015, 2015, 1-8. DOI: https://doi.org/10.1155/2015/519830

Bjerve, K.S., Thoresen, L., Mostad, I.L. and Alme, K. Alpha-linolenic acid deficiency in man: Effect of essential fatty acids on fatty acid composition. Adv. Prostaglandin. Thromboxane. Leukot Res., 1987, 17, 862-865. PMID: 2890285.

Interim Summary of Conclusions and Dietary Recommendations on Total Fat and Fatty Acids From the Joint FAO/WHO Expert Consultation on Fats and Fatty Acids in Human Nutrition, 10-14 November, 2008, WHO, Geneva.

Harris, W.S. Alpha-linolenic acid: A gift from the land?. Am. Heart Assoc., 2005, 111, 2872-2874. DOI: https://doi.org/10.1161/CIRCULATIONAHA.105.545640

Burdge, G.C. and Calder, P.C. Dietary a-linolenic acid and health-related outcomes: A metabolic perspective. Nut. Res. Rev., 2006, 19, 26-52. DOI: https://doi.org/10.1079/NRR2005113

Stark, A.H., Crawford, M.A. and Reifen, R. Update on alpha-linolenic acid. Nut. Rev., 2008, 66, 326-332. DOI: https://doi.org/10.1111/j.1753-4887.2008.00040.x

Lee, A.Y., Lee, M.H., Lee, S. and Cho, E.J. Neuroprotective effect of alpha-linolenic acid against A+¦-mediated inflammatory responses in C6 glial cell. J. Agri. Fd. Chem., 2018, 66, 4853-4861. DOI: https://doi.org/10.1021/acs.jafc.8b00836

Goyens, P.L.L. and Mensink, R.P. Effects of alpha-linolenic acid versus those of EPA/DHA on cardiovascular risk markers in healthy elderly subjects. Eur. J. Clin. Nut., 2006, 60, 978-984. DOI: https://doi.org/10.1038/sj.ejcn.1602408

Goyens, P.L., Spilker, M.E., Zock, P.L., Katan, M.B. and Mensink, R.P. Conversion of a-linolenic acid in humans is influenced by the absolute amounts of ?¦-linolenic acid and linoleic acid in the diet and not by their ratio. The Am. J. Clin. Nut., 2006, 84, 44-53. DOI: https://doi.org/10.1093/ajcn/84.1.44

Pauls, S.D., Rodway, L.A., Winter, T., Taylor, C.G., Zahradka, P. and Aukema, H.M. Antiinflammatory effects of a-linolenic acid in M1-like macrophages are associated with enhanced production of oxylipins from +¦-linolenic and linoleic acid. The J. Nut. Biochem., 2018, 57, 121-129. DOI: https://doi.org/10.1016/j.jnutbio.2018.03.020

Chamberland, J.P. and Moon, H.S. Down-regulation of malignant potential by alpha linolenic acid in human and mouse colon cancer cells. Familial Cancer, 2015, 14, 25-30. DOI: https://doi.org/10.1007/s10689-014-9762-z

Jeyapal, S., Kona, S.R., Mullapudi, S.V., Putcha, U.K., Gurumurthy, P. and Ibrahim, A. Substitution of linoleic acid with a-linolenic acid or long chain n-3 polyunsaturated fatty acid prevents Western diet induced nonalcoholic steatohepatitis. Sci. Rep., 2015, 8, 1-14. DOI: https://doi.org/10.1038/s41598-018-29222-y

Mashhadi, S.N.Y., Askari, V.R., Ghorani, V., Jelodar, G.A. and Boskabady, M.H. The effect of Portulaca oleracea and a-linolenic acid on oxidant/antioxidant biomarkers of human peripheral blood mononuclear cells. Ind. J. Pharmacol., 2018, 50, 177. DOI: https://doi.org/10.4103/ijp.IJP_737_16

Kato, M., Miura, T., Nakao, M., Iwamoto, N., Ishida, T. and Tanigawa, K. Effect of alpha-linolenic acid on blood glucose, insulin and GLUT4 protein content of type 2 diabetic mice. J. Health Sci., 2000, 46, 489-492. DOI: https://doi.org/10.1248/jhs.46.489

Ros, E., Izquierdo-Pulido, M. and Sala-Vila, A. Beneficial effects of walnut consumption on human health: Role of micronutrients. Cur. Opi. Clin. Nut. Metabol. Care., 2018, 21, 498-504. DOI: https://doi.org/10.1097/MCO.0000000000000508

De Lorgeril, M., Renaud, S., Salen, P., Monjaud, I., Mamelle, N., Martin, J.L., Guidollet, J., Touboul, P. and Delaye, J. Mediterranean alpha-linolenic acid-rich diet in secondary prevention of coronary heart disease. The Lancet, 1994, 343, 1454-1459. DOI: https://doi.org/10.1016/S0140-6736(94)92580-1

Zhao, G., Etherton, T.D., Martin, K.R., West, S.G., Gillies, P.J. and Kris-Etherton, P.M. Dietary a-linolenic acid reduces inflammatory and lipid cardiovascular risk factors in hypercholesterolemic men and women. The J. Nut., 2004, 134, 2991-2997. DOI: https://doi.org/10.1093/jn/134.11.2991

Poudyal, H., Panchal, S.K., Waanders, J., Ward, L. and Brown, L. Lipid redistribution by a-linolenic acid-rich chia seed inhibits stearoyl-CoA desaturase-1 and induces cardiac and hepatic protection in diet-induced obese rats. The J. Nut. Biochem., 2012, 23, 153-162. DOI: https://doi.org/10.1016/j.jnutbio.2010.11.011

Clark, L.T. Cholesterol and heart disease: Current concepts in pathogenesis and treatment. J. Nat. Med. Assoc., 1986, 78, 743.

Ramprasath, V.R., Jones, P.J., Buckley, D.D., Woollett, L.A. and Heubi, J.E. Decreased plasma cholesterol concentrations after PUFA-rich diets are not due to reduced cholesterol absorption/ synthesis. Lipids, 2012, 47, 1063-1071. DOI: https://doi.org/10.1007/s11745-012-3708-8

Fukumitsu, S., Villareal, M.O., Onaga, S., Aida, K., Han, J. and Isoda, H. a-Linolenic acid suppresses cholesterol and triacylglycerol biosynthesis pathway by suppressing SREBP-2, SREBP-1a and-1c expression. Cytotechnol., 2013, 65, 899-907. DOI: https://doi.org/10.1007/s10616-012-9510-x

Annema, W. and Tietge, U.J. Regulation of reverse cholesterol transport-a comprehensive appraisal of available animal studies. Nut. Metabol., 2012, 9, 1-18. DOI: https://doi.org/10.1186/1743-7075-9-25

O’Reilly, M.E, Lenighan, Y.M, Dillon, E., Kajani, S., Curley, S., Bruen, R., Byrne, R., Heslin, A.M., Moloney, A.P. and Roche, H.M. Conjugated linoleic acid and alpha linolenic acid improve cholesterol homeostasis in obesity by modulating distinct hepatic protein pathways.

Mol. Nut. Fd. Res., 2020, 64, 1900599. DOI: https://doi.org/10.1002/mnfr.201900599

Oparil, S. and Weber, M.A. Hypertension: A companion to Brenner and Rector’s The kidney Publisher: W.B. Saunders Company, 2000.

Li, G., Wang, X., Yang, H., Zhang, P., Wu, F., Li, Y., Zhou, Y., Zhang, X., Ma, H. and Zhang, W. a-Linolenic acid but not linolenic acid protects against hypertension: Critical role of SIRT3 and autophagic flux. Cell Death. Dis., 2020, 11, 1-13. DOI: https://doi.org/10.1038/s41419-020-2277-7

Piermartiri, T., Pan, H., Figueiredo, T.H. and Marini, A.M. a-Linolenic acid, a nutraceutical with pleiotropic properties that targets endogenous neuroprotective pathways to protect against organophosphate nerve agent-induced neuropathology. Molec., 2015, 20, 20355-20380. DOI: https://doi.org/10.3390/molecules201119698

Weller, J. and Budson, A. Current understanding of Alzheimer GÇÖs disease diagnosis and treatment. F1000Research. 2018, 7, 1-9. DOI: https://doi.org/10.12688/f1000research.14506.1

Litwiniuk, A., Domaäska, A., Chmielowska, M., Martyäska, L., Bik, W. and Kalisz, M. The effects of alpha-linolenic acid on the secretory activity of astrocytes and amyloid-associated neurodegeneration in differentiated sh-sy5y cells: alpha-linolenic acid protects the sh-sy5y cells against amyloid toxicity. Oxi Med. cell longe. 2020, 2020, 1-20. DOI: https://doi.org/10.1155/2020/8908901

Ali, W., Ikram, M., Park, H.Y., Jo, M.G., Ullah, R., Ahmad, S., Bin, A.N. and Kim, M.O. Oral administration of alpha linoleic acid rescues Ab-induced Glia-mediated neuroinflammation and cognitive dysfunction in C57BL/6N mice. Cells. 2020, 9, 667. DOI: https://doi.org/10.3390/cells9030667

Chen, L., Deng, H., Cui, H., Fang, J., Zuo, Z., Deng, J., Li, Y., Wang, X. and Zhao, L. Inflammatory responses and inflammation-associated diseases in organs. Oncotarget., 2017, 9, 7204-7218. DOI: https://doi.org/10.18632/oncotarget.23208

Natto, Z.S., Yaghmoor, W., Alshaeri, H.K. Omega-3 fatty acids effects on inflammatory biomarkers and lipid profiles among diabetic and cardiovascular disease patients: A systematic review and meta-analysis. Sci. Rep., 2019, 9, 18867. DOI: https://doi.org/10.1038/s41598-019-54535-x

Erdinest, N., Shmueli, O., Grossman, Y., Ovadia, H. and Solomon, A. Anti-inflammatory effects of alpha linolenic acid on human corneal epithelial cells. Invest. Ophthal. Vis. Sci., 2012, 53, 4396-4406. DOI: https://doi.org/10.1167/iovs.12-9724

Ren, J. and Chung, S.H. Anti-inflammatory effect of a-linolenic acid and its mode of action through the inhibition of nitric oxide production and inducible nitric oxide synthase gene expression via NF-+¦B and mitogen-activated protein kinase pathways. J. Agri. Fd. Chem., 2007, 55, 5073-5080. DOI: https://doi.org/10.1021/jf0702693

Reifen, R., Karlinsky, A., Stark, A.H., Berkovich, Z. and Nyska, A. a-Linolenic acid (ALA) is an anti-inflammatory agent in inflammatory bowel disease. The J. Nut. Biochem., 2015, 26, 16321640. DOI: https://doi.org/10.1016/j.jnutbio.2015.08.006

Cavina, M., Battino, M., Gaddi, A.V., Savo, M.T. and Visioli, F. Supplementation with alphalinolenic acid and inflammation: A feasibility trial. Int. J. Fd. Sci. Nut., 2021, 72, 386-390. DOI: https://doi.org/10.1080/09637486.2020.1802581

Hassanpour, S.H. and Dehghani, M. Review of cancer from perspective of molecular. J. Cancer Res. Prac., 2017, 4, 127-129. DOI: https://doi.org/10.1016/j.jcrpr.2017.07.001

Jing, K., Wu, T. and Lim, K. Omega-3 polyunsaturated fatty acids and cancer. Anti-Cancer Agents in Med. Chem., 2013, 13, 1162-1177. DOI: https://doi.org/10.2174/18715206113139990319

Dai, J., Shen, J., Pan, W., Shen, S. and Das, U.N. Effects of polyunsaturated fatty acids on the growth of gastric cancer cells in vitro. Lipids Health Dis., 2013, 12, 1-15. DOI: https://doi.org/10.1186/1476-511X-12-71

Kumar, G.S. and Das, U.N. Cytotoxic action of alpha-linolenic and eicosapentaenoic acids on myeloma cells in vitro. Prostag, Leukot Essen Fatty Acids. 1997, 56, 285-293. DOI: https://doi.org/10.1016/S0952-3278(97)90572-X

Deshpande, R., Mansara, P., Suryavanshi, S. and Kaul-Ghanekar, R. Alpha-linolenic acid regulates the growth of breast and cervical cancer cell lines through regulation of NO release and induction of lipid peroxidation. J. Mol. Biochem., 2013, 2, 6-17.

Roy, S., Rawat, A.K., Sammi, S.R., Devi, U., Singh, M., Gautam, S., Yadav, R.K., Rawat, J.K., Singh, L. and Ansari, M.N. Alpha-linolenic acid stabilizes HIF-1 and downregulates FASN to promote mitochondrial apoptosis for mammary gland chemoprevention. Oncotarget., 2017, 8, 70049. DOI: https://doi.org/10.18632/oncotarget.19551

Nassir, F., Rector, R.S., Hammoud, G.M. and Ibdah, J.A. Pathogenesis and prevention of hepatic steatosis. Gastro. Hepatol., 2015, 11, 167.

Candido, J.C., Figueiredo, S.P., Silva, R.D.C., Portugal, L.C. and Jaques, J.A.D.S. Protective effect of a-linolenic acid on non-alcoholic hepatic steatosis and interleukin-6 and-10 in wistar rats. Nutr., 2020, 12, 1-21. DOI: https://doi.org/10.3390/nu12010009

Chavan, T., Khadke, S., Harke, S., Ghadge, A., Karandikar, M., Pandit, V., Ranjekar, P., Kulkarni, O. and Kuvalekar, A. Hepatoprotective effect of polyunsaturated fatty acids against repeated subacute acetaminophen dosing in rats. Int. J. Pharm. Bio. Sci., 2013, 4, 286-295.

Morozov, V.A. and Lagaye, S. Hepatitis C virus: Morphogenesis, infection and therapy. World J.

Hepatol., 2018, 10, 186.

Shittu, L.A., Jinadu, A.M., Shittu, R.K. and Shittu, S.A. Molecular docking and pharmacophorebased virtual screening of novel inhibitors for HCV NS5B RNA-dependent RNA polymerase enzyme from crude sesame essential oil. Am. J. Biotech. Bioinfo., 2018, 2.

Al-Dalaen, S.M. and Al-Qtaitat, A.I. Oxidative stress versus antioxidants. Am. J. Biosci. Bioeng., 2014, 2, 60-71. DOI: https://doi.org/10.11648/j.bio.20140205.11

Zhang, L.H., Zhang, W., Wei, G.H., Yang, P., Liu, J. and Niu, X.L. Effects of alpha-linolenic acid on inflammation and oxidative stress in the diabetic rats. Zhongguo ying yong sheng li xue za zhiZhongguo yingyong shenglixue zazhi. Chin. J. App. Physiol., 2012, 28, 64-67.

Zhu, X., Wang, B., Zhang, X., Chen, X., Zhu, J., Zou, Y. and Li, J. Alpha-linolenic acid protects against lipopolysaccharide-induced acute lung injury through anti-inflammatory and antioxidative pathways. Micro. Pathogen., 2020, 142, 104077. DOI: https://doi.org/10.1016/j.micpath.2020.104077

Piero, M.N., Nzaro, G.M. and Njagi, J.M. Diabetes mellitus-a devastating metabolic disorder. As. J. Biomed. Pharmac. Sci., 2015, 5, 1-7. DOI: https://doi.org/10.15272/ajbps.v4i40.645

Telle-Hansen, V.H., Gaundal, L. and Myhrstad, M.C. Polyunsaturated fatty acids and glycemic control in type 2 diabetes. Nutr., 2019, 11, 1067. DOI: https://doi.org/10.3390/nu11051067

Zhang, W., Li, R., Li, J., Wang, W., Tie, R., Tian, F., Liang, X., Xing, W., He, Y. and Yu, L. Alphalinolenic acid exerts an endothelial protective effect against high glucose injury via PI3K/Akt pathway. PLoS One, 2013, 8, 68489. DOI: https://doi.org/10.1371/journal.pone.0068489

Suanarunsawat, T., Anantasomboon, G. and Piewbang, C. Anti-diabetic and anti-oxidative activity of fixed oil extracted from Ocimum sanctum L. leaves in diabetic rats. Exper. Therap. Med., 2016, 11, 832-840. DOI: https://doi.org/10.3892/etm.2016.2991

Austria, J.A., Richard, M.N., Chahine, M.N., Edel, A.L., Malcolmson, L.J., Dupasquier, C.M. and Pierce, G.N. Bioavailability of alpha-linolenic acid in subjects after ingestion of three different forms of flaxseed. J. Amer. Col. Nut., 2008, 27, 214-221. DOI: https://doi.org/10.1080/07315724.2008.10719693

Patenaude, A., Rodriguez-Leyva, D., Edel, A.L., Dibrov, E., Dupasquier, C.M.C., Austria, J.A., Richard, M.N., Chahine, M.N., Malcolmson, L.J. and Pierce, G.N.. Bioavailability of a-linolenic acid from flaxseed diets as a function of the age of the subject. Eur. J. Clin. Nut., 2009, 63, 1123-1129. DOI: https://doi.org/10.1038/ejcn.2009.41

Cou delo, L., Bou-Vaysse, C., Fonseca, L., Montesinos, E., Djoukitch, S., Combe, N. and Cansell, M. Lymphatic absorption of a-linolenic acid in rats fed flaxseed oil-based emulsion.

Br. J. Nut., 2011, 105, 1026-1035. DOI: https://doi.org/10.1017/S000711451000454X

Poums, B.C., Langelier, B., Houlier, F., Alessandri, J.M., Durand, G., Latge, C. and Guesnet, P. Comparative bioavailability of dietary alpha-linolenic and docosahexaenoic acids in the growing rat. Lipids, 2001, 36, 793-800. DOI: https://doi.org/10.1007/s11745-001-0786-5

Makni, M., Fetoui, H., Gargouri, N.K., Garoui, E.M., Jaber, H., Makni, J., Boudawara, T. and Zeghal, N. Hypolipidemic and hepatoprotective effects of flax and pumpkin seed mixture rich in w-3 and w-6 fatty acids in hypercholesterolemic rats. Fd. Chem. Tox., 2008, 46, 3714-3720. DOI: https://doi.org/10.1016/j.fct.2008.09.057

Guil-Guerrero, J.L., Rincn-Cervera, M., Venegas-Venegas, C.E., Ramos-Bueno, R.P. and Suírez, M.D. Highly bioavailable [alpha]-linolenic acid from the subcutaneous fat of the Palaeolithic Relict” Galician horse”. Int. Fd. Res. J., 2013, 20, 3249. DOI: https://doi.org/10.1016/j.jfca.2013.02.007

Pignitter, M., Lindenmeier, M., Andersen, G., Herrfurth, C., Beermann, C., Schmitt, J.J., Feussner, I., Fulda, M. and Somoza, V. Effect of 1- and 2- month high-dose alpha-linolenic acid treatment on 13c-labeled alpha-linolenic acid incorporation and conversion in healthy subjects. Mol. Nut. Fd. Res., 2018, 62, 1800271. DOI: https://doi.org/10.1002/mnfr.201800271

Burdge, G.C. and Wootton, S.A. Conversion of a-linolenic acid to eicosapentaenoic, docosapentaenoic and docosahexaenoic acids in young women. Br. J. Nut., 2002, 88, 411-420. DOI: https://doi.org/10.1079/BJN2002689

Domenichiello, A.F., Kitson, A.P. and Bazinet, R.P. Is docosahexaenoic acid synthesis from a-linolenic acid sufficient to supply the adult brain?. Prog. Lipid Res., 2015, 59, 54-66. DOI: https://doi.org/10.1016/j.plipres.2015.04.002