On Level 3 Ramanujan-Sato Type Series for 1/π

Jump To References Section


  • Department of Studies in Mathematics University of Mysore,Manasagangotri, Mysore-570006 ,IN
  • School of Cotinuing Education Azim Premji University, Sarjapura, Bengaluru-562125 ,IN
  • Department of Mathematics, Vidyavardhaka College of Engineering Mysuru-570002 ,IN




Dedekind eta function, Modular equations, Theta Functions, Eisenstein series.


Srinivasa Ramanujan developed seventeen fast convergent series for 1/π. Motivated by Ramanujan’s series for 1/π many mathematicians have developed many theories for deriving new series for 1/π. In this article we obtain new series for 1/π using Eisenstein series of level three.


Download data is not yet available.


Metrics Loading ...



How to Cite

Vasuki, K. R., Anusha, T., & Shwetha, H. T. (2024). On Level 3 Ramanujan-Sato Type Series for 1/π. The Journal of the Indian Mathematical Society, 91(1-2), 01–09. https://doi.org/10.18311/jims/2024/36136



B. C. Berndt, Ramanujan’s Notebooks, Part II, Springer New York, 1989.

B. C. Berndt, Ramanujan’s Notebooks, Part III, Springer New York, 1991.

H. H. Chan, S. H. Chan, and Z. Liu, Domb’s numbers and Ramanujan-Sato type series for 1/π, Adv. Math, 186 (2004), 396–410.

H. H. Chan, Y. Tanigawa, Y. Yifan, and W. Zudilin, New analogues of clausen’s identities arising from the theory of modular forms, Glasnik Matematicki, 42. (62) (2007), 301-308.

K. R. Vasuki, On certain Ramanujan-Weber type modular equations, J. Indian Math. Soc. (N.S.), 75(1-4) (2009), 173–192.

K. R. Vasuki and K. Shivashankara, A note on explicit evaluations of products and ratios of class invariants, Math. Forum, 13 (1999) , 45–56.

N. D. Baruah, On some of Ramanujan’s Schl¨afli-type “mixed” modular equations., J. Number Theory, 100(2) (2003), 270–294.

R. G. Veeresha, An elementary approach to Ramanujan’s modular equations of degree 7 and its appilications, Doctoral Thesis, University of Mysore, 2015.

S. Cooper , Ramanujan’s Theta Functions, Springer, Cham, 2017.

S. Ramanujan, Modular equations and approximations to π, Quart. J. Math, 45 (1914) ,350–372.

S. Bhargava, K. R. Vasuki, and B. R. S. Kumar, Evaluations of Ramanujan-Weber class invariant gn, J. Indian Math. Soc. (N.S.), 72(1-4) (2005), 115–127.