Novel Therapeutic Intervention using Coenzyme Q10 and Insulin Sensitizer on Experimentally- Initiated Diabetic Neuropathy

Authors

  • Rajesh A. Maheshwari Department of Pharmacy, Sumandeep Vidyapeeth Deemed to be University, Piparia, Vadodara – 391760, Gujarat
  • Ramachandran Balaraman Department of Pharmacy, Sumandeep Vidyapeeth Deemed to be University, Piparia, Vadodara – 391760, Gujarat
  • Ashim Kumar Sen Department of Pharmacy, Sumandeep Vidyapeeth Deemed to be University, Piparia, Vadodara – 391760, Gujarat
  • Umang Shah Ramanbhai Patel College of Pharmacy, CHARUSAT Campus, Changa – 388421, Gujarat
  • Kinjal P. Patel Department of Pharmacy, Sumandeep Vidyapeeth Deemed to be University, Piparia, Vadodara – 391760, Gujarat
  • Dhanya B. Sen Department of Pharmacy, Sumandeep Vidyapeeth Deemed to be University, Piparia, Vadodara – 391760, Gujarat

DOI:

https://doi.org/10.18311/jnr/2022/30085

Keywords:

Histopathological Examination, Metformin, Nerve Damage, Nutraceutical, Streptozotocin-nicotinamide

Abstract

Diabetes is one of the main disease having many repercussions due to which there is a huge economic burden globally. Therefore, there is a need of good therapeutic intervention by using some nutraceuticals to combat this dreadful disease especially complications such as diabetic neuropathy where patients suffer from severe pain and disability. Therefore, nutraceuticals like coenzyme Q10 and metformin were used in this study to see how they are effective in alleviating the symptoms of diabetic peripheral neuropathy. The animal experiments were conducted to induce neuropathy by using streptozotocin-nicotinamide. Animals were divided into five groups such as control, diabetic control, coenzyme Q10, metformin, and their combination. The nerve function test was conducted by using paw withdrawal response, tail-flick response, and muscular grip strength. Antioxidant parameters were assessed by estimating such MDA, SOD, and GSH. The sciatica nerve was isolated and a histopathological examination was conducted. Neuropathy was assessed in diabetic control animals which showed a substantial decrease in grip strength, increase in the paw withdrawal, and tail-flick response. It was found that there was a rapid improvement in nerve function test when a combination of coenzyme Q10 and metformin was given together as compared to animals given coenzyme Q10 and metformin alone. From this study, it is shown that combination therapy exhibited a better improvement in the nerve function test and control of the free radical generation which ultimately results in nerve damage.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

Zangiabadi N, Asadi-Shekaari M, Sheibani V, Jafari M, Shabani M, Asadi AR, et al. Date fruit extract is a neuroprotective agent in diabetic peripheral neuropathy in streptozotocin-induced diabetic rats: A multimodal analysis. Oxid Med Cell Longev. 2011. https://doi.org/10.1155/2011/976948. PMid:22191015. PMCid:PMC3236446

Gallieni M, Aiello A, Tucci B, Sala V, Brahmochary Mandal SK, Doneda A, et al. The burden of hypertension and kidney disease in Northeast India: The Institute for Indian Mother and Child noncommunicable diseases project. Sci World J. 2014. https://doi.org/10.1155/2014/320869. PMid:24616621. PMCid:PMC3927758

Belchetz PE, Hammond PJ. Mosby’s color atlas and text of diabetes and endocrinology. Elsevier Health Sciences; 2003.

Houreld NN. Shedding light on a new treatment for diabetic wound healing: A review on phototherapy. Sci World J. 2014. https://doi.org/10.1155/2014/398412. PMid:24511283. PMCid:PMC3913345

Gilron I, Coderre TJ. Emerging drugs in neuropathic pain. Expert Opin Emerg Drugs. 2007; 12(1);113–26. https://doi.org/10.1517/14728214.12.1.113. PMid:17355217

Clark Jr CM, Lee DA. Prevention and treatment of the complications of diabetes mellitus. N Eng J Med. 1995; 332(18):1210–7. https://doi.org/10.1056/NEJM199505043321807. PMid:7700316

Arner S, Meyerson BA. Lack of analgesic effect of opioids on neuropathic and idiopathic forms of pain. Pain. 1988; 33(1):11–23. https://doi.org/10.1016/0304-3959(88)90198-4

Abuaisha BB, Costanzi JB, Boulton AJ. Acupuncture for the treatment of chronic painful peripheral diabetic neuropathy: a long-term study. Diabetes Res Clin Pract. 1998; 39(2):115–21. https://doi.org/10.1016/S0168-8227(97)00123-X

Apfel SC. Introduction to diabetic neuropathy. Am J Med. 1999; 107(2):1S. https://doi.org/10.1016/S0002-9343(99)00006-6

Baynes JW, Thorpe R. Role of oxidative stress in diabetic complications. A new perspective on an old paradigm. Diabetes. 1999; 48:1–9. https://doi.org/10.2337/diabetes.48.1.1. PMid:9892215

Kandhare AD, Raygude KS, Ghosh P. Neuroprotective effect of naringin by modulation of endogenous biomarkers in streptozotocin induced painful diabetic neuropathy. Fitoterapia 2012; 83:650–9. https://doi.org/10.1016/j.fitote.2012.01.010. PMid:22343014

Schmelzer C, Lindner I, Rimbach G, Niklowitz P, Menke T, Döring F. Functions of coenzyme Q10 in inflammation and gene expression. Biofactors. 2008; 32(1–4):179–83. https://doi.org/10.1002/biof.5520320121. PMid:19096114

Kohli Y, Suto Y, Kodama T. Effect of hypoxia on acetic acid ulcer of the stomach in rats with or without coenzyme Q10. Jpn J Exp Med. 1981; 51:105–8. PMid:7277789.

Lenaz G, Fato R, Formiggini G, Genova ML. The role of Coenzyme Q in mitochondrial electron transport. Mitochondrion. 2007; 7:S8–33. https://doi.org/10.1016/j.mito.2007.03.009. PMid:17485246

Alhaider AA, Korashy HM, Sayed-Ahmed MM, Mobark M, Kfoury H, Mansour MA. Metformin attenuates streptozotocin-induced diabetic nephropathy in rats through modulation of oxidative stress genes expression. Chem Biol Interact. 2011; 192(3):233–42. https://doi.org/10.1016/j.cbi.2011.03.014. PMid:21457706

Ma J, Yu H, Liu J, Chen Y, Wang Q, Xiang L. Metformin attenuates hyperalgesia and allodynia in rats with painful diabetic neuropathy induced by streptozotocin. Eur J Pharmacol. 2015; 764:599– 606. https://doi.org/10.1016/j.ejphar.2015.06.010. PMid:26054810

Maheshwari RA, Khatri K, Sailor GU, Balaraman R. Antidiabetic activity of Dibolin (a polyherbal formulation) in streptozotocin-nicotinamide induced type 2 diabetic rats. Int J Pharm Pharm Sci. 2014; 2:893–7.

Garjani A, Andalib S, Biabani S. Combined atorvastatin and coenzyme Q10 improve the left ventricular function in isoproterenol-induced heart failure in rat. Eur J Pharmacol. 2011; 666(1–3):135–41. https://doi.org/10.1016/j.ejphar.2011.04.061. PMid:21570962

Waisundara VY, Hsu A, Tan BK, Huang D. Baicalin reduces mitochondrial damage in streptozotocininduced diabetic Wistar rats. Diabetes Metab Res Rev. 2009; 25(7):671–7. https://doi.org/10.1002/dmrr.1005. PMid:19688721

Sharma AK, Sharma A, Kumari R, Kishore K, Sharma D, Srinivasan BP, et al. Sitagliptin, sitagliptin and metformin, or sitagliptin and amitriptyline attenuate streptozotocin-nicotinamide induced diabetic neuropathy in rats. J Biomed Res. 2012; 26(3):200–10. https://doi.org/10.7555/JBR.26.20110054. PMid:23554750. PMCid:PMC3596070

Woolfe G, MacDonald AD. The evaluation of the analgesic action of pethidine hydrochloride (Demerol). J Pharmacol Exp Ther. 1944; 80:300–7.

Sharma SS, Kumar A, Kaundal R. 4-Amino 1,8-napthalimide: A potent PARP inhibitor, its neuroprotective role in experimental diabetic neuropathy. Life Sci. 2008; 82:570–6. https://doi.org/10.1016/j.lfs.2007.11.031. PMid:18262571

Slater TF, Sawyer BC. The stimulatory effect of carbon tetrachloride and other halogenalkane or peroxidative reaction in the rat liver functions in vitro. Biochem J. 1971; 123(5):805–15. https://doi.org/10.1042/bj1230805. PMid:4399399. PMCid:PMC1177080

Mishra HP, Fridovich I. The role of superoxide anion in the autooxidation of epinephrine and a simple assay of superoxide dismutase. J Biol Chem. 1972; 247(10):3170–5. https://doi.org/10.1016/S0021-9258(19)45228-9

Moron MS, Depierre JW. Levels of glutathione, glutathione reductase and glutathione S transferase activities in rat lung and liver. Biochim Biophys Acta. 1999; 582(1):67–78. https://doi.org/10.1016/0304-4165(79)90289-7

Maheshwari R, Pandya B, Balaraman R, Seth AK, Yadav YC, Sankar VS. Hepatoprotective effect of Livplus-A polyherbal formulation. Pharmacogn J. 2015; 7(5):311–6. https://doi.org/10.5530/pj.2015.5.11

Kumar A, Kaundal RK, Iyer S, Sharma SS. Effects of resveratrol on nerve functions, oxidative stress and DNA fragmentation in experimental diabetic neuropathy. Life Sci. 2007; 80(13):1236–44. https://doi.org/10.1016/j.lfs.2006.12.036. PMid:17289084

Stevens MJ, Obrosova I, Cao X, Van Huysen C, Greene DA. Effects of DL-alpha-lipoic acid on peripheral nerve conduction, blood flow, energy metabolism, and oxidative stress in experimental diabetic neuropathy. Diabetes. 2000; 49(6):1006–15. https://doi.org/10.2337/diabetes.49.6.1006. PMid:10866054

Sayyed SG, Kumar A, Sharma SS. Effects of U83836E on nerve functions, hyperalgesia and oxidative stress in experimental diabetic neuropathy. Life Sci. 2006; 79:777–83. https://doi.org/10.1016/j.lfs.2006.02.033. PMid:16581090

Cui XP, Li BY, Gao HQ, Wei N, Wang WL, Lu M. Effects of grape seed proanthocyanidin extracts on peripheral nerves in streptozocin-induced diabetic rats. Nutr Sci Vitaminol. 2008; 54(4):321–8. https://doi.org/10.3177/jnsv.54.321. PMid:18797155

Arora M, Kumar A, Kaundal RK, Sharma SS. Amelioration of neurological and biochemical deficits by peroxynitrite decomposition catalysts in experimental diabetic neuropathy. Eur J Pharmacol. 2008; 596(1–3):77–83. https://doi.org/10.1016/j.ejphar.2008.08.003. PMid:18768138

Saini AK, Kumar HAS, Sharma SS. Preventive and curative effect of edaravone on nerve functions and oxidative stress in experimental diabetic neuropathy. Eur J Pharmacol. 2007; 568:164–72. https://doi.org/10.1016/j.ejphar.2007.04.016. PMid:17521626

Downloads

Published

2022-07-30

How to Cite

Maheshwari, R. A., Balaraman, R., Kumar Sen, A., Shah, U., Patel, K. P., & Sen, D. B. (2022). Novel Therapeutic Intervention using Coenzyme Q10 and Insulin Sensitizer on Experimentally- Initiated Diabetic Neuropathy. Journal of Natural Remedies, 22(3), 449–456. https://doi.org/10.18311/jnr/2022/30085

Issue

Section

Research Articles

Most read articles by the same author(s)