Medicinal Herbs as an Alternative Treatment in the Management of Hyperlipidemia

Jump To References Section

Authors

  • Department of Pharmacy, Sumandeep Vidyapeeth Deemed to be University, Piparia, Vadodara – 391760, Gujarat ,IN
  • Department of Pharmacy, Sumandeep Vidyapeeth Deemed to be University, Piparia, Vadodara – 391760, Gujarat ,IN
  • Department of Pharmacy, Sumandeep Vidyapeeth Deemed to be University, Piparia, Vadodara – 391760, Gujarat ,IN
  • Department of Pharmacy, Sumandeep Vidyapeeth Deemed to be University, Piparia, Vadodara – 391760, Gujarat ,IN
  • Department of Pharmacy, Sumandeep Vidyapeeth Deemed to be University, Piparia, Vadodara – 391760, Gujarat ,IN

DOI:

https://doi.org/10.18311/jnr/2023/32174

Keywords:

Cardiovascular Diseases, Hyperlipidemia, Hypolipidemic Drugs, Lipids, Medicinal Plants

Abstract

The medical disorder known as hyperlipidemia is characterized by unusually high amount of lipids in the blood (fatty substances). This illness is also associated with being overweight. Even though hypolipidemic drugs are commonly used to treat cardiovascular diseases and stroke, there is a possibility that they may cause undesirable side effects. Many different medicinal plants have been successfully utilized in the treatment of various conditions in India. The treatment of hyperlipidemia was the primary focus of this investigation into the therapeutic properties of a variety of plants.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Downloads

Published

2023-06-13

How to Cite

Kumar Sen, A., Balaraman, R., Sen, D. B., Kumar Dash, D., & Maheshwari, R. A. (2023). Medicinal Herbs as an Alternative Treatment in the Management of Hyperlipidemia. Journal of Natural Remedies, 23(2), 325–337. https://doi.org/10.18311/jnr/2023/32174

Issue

Section

Review Articles
Received 2022-12-14
Accepted 2023-04-20
Published 2023-06-13

 

References

Jain PG, Surana SJ. A review of Indian medicinal plants with hypolipidemic activity and their medicinal importance. World J Pharm Pharm Sci. 2015; 4(3):1477-93.

Edeoga HO, Okwu DE, Mbaebie BO. Phytochemical constituents of some Nigerian medicinal plants. Afr J Biotechnol. 2005; 4(7):685-8. https://doi.org/10.5897/AJB2005.000-3127 DOI: https://doi.org/10.5897/AJB2005.000-3127

Bauman AE. Updating the evidence that physical activity is good for health: An epidemiological review 2000–2003. J Sci Med Sport. 2004; 7(1):6-19. https://doi.org/10.1016/S1440-2440(04)80273-1 DOI: https://doi.org/10.1016/S1440-2440(04)80273-1

Kaliora AC, Dedoussis GV, Schmidt H. Dietary antioxidants in preventing atherogenesis. Atherosclerosis. 2006; 187(1):1-7. https://doi.org/10.1016/j.atherosclerosis. 2005.11.001 DOI: https://doi.org/10.1016/j.atherosclerosis.2005.11.001

Berliner JA, Heinecke JW. The role of oxidized lipoproteins in atherogenesis. Free Radic Biol Med. 1996; 20(5):707-27. https://doi.org/10.1016/0891-5849(95)02173-6 DOI: https://doi.org/10.1016/0891-5849(95)02173-6

Sempos CT. The expert panel on detection, evaluation and treatment of high blood cholesterol in adults. J Am Med Asso. 1993; 269:3009-14. https://doi.org/10.1001/jama.1993.03500230091035 DOI: https://doi.org/10.1001/jama.1993.03500230091035

Bhatnagar D, Soran H, Durrington PN. Hypercholesterolaemia and its management. Br Med J. 2008; 337. https://doi.org/10.1136/bmj.a993 DOI: https://doi.org/10.1136/bmj.a993

Innerarity TL, Mahley RW, Weisgraber KH, Bersot TP, Krauss RM, Vega GL, et al. Familial defective apolipoprotein B-100: A mutation of apolipoprotein B that causes hypercholesterolemia. J Lipid Res. 1990; 31(8):1337-49. https://doi.org/10.1016/S0022- 2275(20)42605-7 DOI: https://doi.org/10.1016/S0022-2275(20)42605-7

Grundy SM. George Lyman Duff Memorial Lecture; Multifactorial etiology of hypercholesterolemia. Implications for prevention of coronary heart disease. Arterioscler Thromb Vasc Biol. 1991; 11(6):1619-35. https://doi.org/10.1161/01.ATV.11.6.1619 DOI: https://doi.org/10.1161/01.ATV.11.6.1619

Sniderman AD, Tsimikas S, Fazio S. The severe hypercholesterolemia phenotype: Clinical diagnosis, management, and emerging therapies. J Am Coll Cardiol. 2014; 63(19):1935-47. https://doi.org/10.1016/j.jacc.2014.01.060 DOI: https://doi.org/10.1016/j.jacc.2014.01.060

Clark LT. Cholesterol and heart disease: Current concepts in pathogenesis and treatment. J Natl Med Assoc. 1986; 78:743-51.

TG and HDL Working Group of the Exome Sequencing Project, National Heart, Lung, and Blood Institute. Loss-of-function mutations in APOC3, triglycerides, and coronary disease. New Eng J Med. 2014; 371(1):22-31. https://doi.org/10.1056/NEJMoa1307095 DOI: https://doi.org/10.1056/NEJMoa1307095

Khetarpal SA, Rader DJ. Triglyceride-rich lipoproteins and coronary artery disease risk: New insights from human genetics. Arterioscler Thromb Vasc Biol. 2015; 35(2):e3-e9. https://doi.org/10.1161/ATVBAHA.114.305172 DOI: https://doi.org/10.1161/ATVBAHA.114.305172

Dewey FE, Gusarova V, O’Dushlaine C, Gottesman O, Trejos J, Hunt C, et al. Inactivating variants in ANGPTL4 and risk of coronary artery disease. New Eng J Med. 2016; 374(12):1123-33. https://doi.org/10.1056/NEJMoa1510926 DOI: https://doi.org/10.1056/NEJMoa1510926

Qin Y, Zhou Y, Chen SH, Zhao XL, Ran L, Zeng XL, et al. Fish oil supplements lower serum lipids and glucose in correlation with a reduction in plasma fibroblast growth factor 21 and prostaglandin E2 in nonalcoholic fatty liver disease associated with hyperlipidemia: A randomized clinical trial. PLoS One. 2015; 10(7). https://doi.org/10.1371/journal.pone.0133496 DOI: https://doi.org/10.1371/journal.pone.0133496

Jafari-Dehkordi E, Seidkhani-Nahal A. Lipidlowering effect of artichoke on liver phosphatidate phosphohydrolase and plasma lipids in hyperlipidemic rats. J Med Plant Res. 2011; 5(19):4918-24.

Sohn CW, Kim H, You BR, Kim MJ, Kim HJ, Lee JY, et al. High temperature-and high pressure-processed garlic improves lipid profiles in rats fed high cholesterol diets. J Med Food. 2012; 15(5):435-40. https://doi.org/10.1089/jmf.2011.1922 DOI: https://doi.org/10.1089/jmf.2011.1922

Sen DB, Sen AK, Patel KP, Balaraman R, Shah U, Maheshwari RA. Anti ulcer activities of herbal remedies as alternative therapy. J Nat Rem. 2022; 3:318-29. https://doi.org/10.18311/jnr/2022/30157 DOI: https://doi.org/10.18311/jnr/2022/30157

Sun YE, Wang W, Qin J. Anti-hyperlipidemia of garlic by reducing the level of total cholesterol and low-density lipoprotein: A meta-analysis. Med. 2018; 97(18). https://doi.org/10.1097/MD.0000000000010255 DOI: https://doi.org/10.1097/MD.0000000000010255

Sobenin IA, Myasoedova VA, Iltchuk MI, Zhang DW, Orekhov AN. Therapeutic effects of garlic in cardiovascular atherosclerotic disease. Chin J Nat Med. 2019; 17(10):721-8. https://doi.org/10.1016/S1875- 5364(19)30088-3 DOI: https://doi.org/10.1016/S1875-5364(19)30088-3

Zhao Y, Chen ZY. Roles of spicy foods and their bioactive compounds in management of hypercholesterolemia. J Agric Food Chem. 2018; 66(33):8662-71. https://doi.org/10.1021/acs.jafc.8b02975 DOI: https://doi.org/10.1021/acs.jafc.8b02975

Alam MK, Nyeem MA, Samad MA. Effects of garlic on hyperlipidemia: A review. J Med Plant. 2018; 6(2):44-8.

Wojcicki J, Winter S. Effect of preparation Cynarex on the blood serum lipids level of the workers exposed to the chronic action of carbon disulphide. Medycyna Pracy. 1975; 26:213-7.

Wójcicki J. Effect of 1,5-dicaffeylquinic acid (cynarine) on cholesterol levels in serum and liver of acute ethanol- treated rats. Drug Alcohol Depend. 1978; 3:143-5. https://doi.org/10.1016/0376-8716(78)90028-5 DOI: https://doi.org/10.1016/0376-8716(78)90028-5

Alkushi AG. Biological effect of Cynara cardunculus on kidney status of hypercholesterolemic rats. Pharmacogn Mag. 2017; 13:S430-S436. https://doi.org/10.4103/pm.pm_14_17 DOI: https://doi.org/10.4103/pm.pm_14_17

Brown JE, Rice-Evans CA. Luteolin- rich artichoke extract protects low density lipoprotein from oxidation in vitro. Free Rad Res. 1998; 29:247-55. https:// doi.org/10.1080/10715769800300281 DOI: https://doi.org/10.1080/10715769800300281

Gebhardt R. Inhibition of cholesterol biosynthesis in primary cultured rat hepatocytes by artichoke (Cynara scolymus L.) extracts. J Pharmacol Exp. 1998; 286:1122-8.

Rezazadeh K, Rezazadeh F, Ebrahimi-Mameghani M. The effect of artichoke leaf extract supplementation on lipid and CETP response in metabolic syndrome with respect to Taq 1B CETP polymorphism: A randomized placebo-controlled clinical trial. Eur J Integr Med. 2018; 17:112-8. https://doi.org/10.1016/j. eujim.2017.12.008 DOI: https://doi.org/10.1016/j.eujim.2017.12.008

Ahmed SF, Abd Al Haleem EN, El-Tantawy WH. Evaluation of the anti-atherogenic potential of Egyptian artichoke leaf extract in hypercholesterolemic rats. Arch Physiol Biochem. 2022; 128(1):163-74. https://doi.org/10.1080/13813455.2019.1669662 DOI: https://doi.org/10.1080/13813455.2019.1669662

Gebhardt R. Inhibition of cholesterol biosynthesis in HepG2 cells by arti- choke extracts is reinforced by glucosidase pretreatment. Phytother Res. 2002; 16:368–72. https://doi.org/10.1002/ptr.960 DOI: https://doi.org/10.1002/ptr.960

Qiang Z, Lee SO, Ye Z, Wu X, Hendrich S. Artichoke extract lowered plasma cholesterol and increased fecal bile acids in Golden Syrian hamsters. Phytother Res. 201l; 26(7):1048-52. https://doi.org/10.1002/ ptr.3698 DOI: https://doi.org/10.1002/ptr.3698

Mocelin R, Marcon M, Santo GD, Zanatta L, Sachett A, Schönell AP, et al. Hypolipidemic and antiatherogenic effects of Cynara scolymus in cholesterol-fed rats. Revista Brasileira de Farmacognosia. 2016; 26:233-9. https://doi.org/10.1016/j.bjp.2015.11.004 DOI: https://doi.org/10.1016/j.bjp.2015.11.004

Nadkarni KM. Trigonella foenum graecum: Indian materia. Médica. 1993; 1240:1249

Kumar K, Kumar S, Datta A, Bandyopadhyay A. Effect of fenugreek seeds on glycemia and dyslipidemia in patients with Type 2 diabetes mellitus. Int J Med Sci Public Health. 2015; 4(7):997-1000. https://doi.org/10.5455/ijmsph.2015.11032015202 DOI: https://doi.org/10.5455/ijmsph.2015.11032015202

Belaid Nouira Y, Bakhta H, Bouaziz M. Study on the lipid profile and the parieto-temporal lipid peroxidation in AlCl3 mediated neurotoxicity: The modulatory effect of the fenugreek seeds. Lipids Health Dis. 2012; 11(1):1-8. https://doi.org/10.1186/1476-511X-11-16 DOI: https://doi.org/10.1186/1476-511X-11-16

Jetle L, Harvey L, Eugeni K, Leven SN. The 4-hydroxy isoleucine plant-derived treatment for metabolic syndrome. Current opinion treatment for the metabolic syndrome. Curr Opin Investig Drugs. 2000; 10:353-8.

Sharma MS, Choudhary PR. Hypolipidemic effect of fenugreek seeds and its comparison with atorvastatin on experimentally induced hyperlipidemia. J Coll Physicians Surg Pak. 2014; 24(8):539-42.

Hasani-Ranjbar S, Nayebi N, Moradi L, Mehri A, Larijani B, Abdollahi M. The efficacy and safety of herbal medicines used in the treatment of hyperlipidemia: A systematic review. Curr Pharm Des. 2010; 16;2935-47. https://doi.org/10.2174/138161210793176464 DOI: https://doi.org/10.2174/138161210793176464

Qin S, Huang L, Gong J, Shen S, Huang J, Ren H, et al. Efficacy and safety of turmeric and curcumin in lowering blood lipid levels in patients with cardiovascular risk factors: A meta-analysis of randomized controlled trials. Nutr J. 2017; 16. https://doi.org/10.1186/s12937-017-0293-y DOI: https://doi.org/10.1186/s12937-017-0293-y

Simental-Mendía LE, Pirro M, Gotto Jr AM, Banach M, Atkin SL, Majeed M, et al. Lipid-modifying activity of curcuminoids: A systematic review and meta-analysis of randomized controlled trials. Crit Rev Food Sci Nutr. 2019; 59(7):1178-87. https://doi.org/10.1080/10408398.2017.1396201 DOI: https://doi.org/10.1080/10408398.2017.1396201

Sarker S, Haque MI, Sujan KM, Talukder MI, Miah MA. Curcumin attenuates butter fat induced hyperlipidemia in mice. J Bangladesh Agric Univ. 2019; 17(2):220-5. https://doi.org/10.3329/jbau.v17i2.41972 DOI: https://doi.org/10.3329/jbau.v17i2.41972

Xia ZH, Chen WB, Shi L, Jiang X, Li K, Wang YX, et al. The underlying mechanisms of curcumin inhibition of hyperglycemia and hyperlipidemia in rats fed a high-fat diet combined with STZ treatment. Molecules. 2020; 25(2):271. https://doi.org/10.3390/molecules25020271 DOI: https://doi.org/10.3390/molecules25020271

Zou J, Zhang S, Li P, Zheng X, Feng D. Supplementation with curcumin inhibits intestinal cholesterol absorption and prevents atherosclerosis in high-fat diet–fed apolipoprotein E knockout mice. Nutr Res. 2018; 56:32-40. https://doi.org/10.1016/j.nutres.2018.04.017 DOI: https://doi.org/10.1016/j.nutres.2018.04.017

Kim JH, Kim OK, Yoon HG, Park J, You Y, Kim K, et al. Anti-obesity effect of extract from fermented Curcuma longa L. through regulation of adipogenesis and lipolysis pathway in high-fat diet-induced obese rats. Food Nutr Res. 2016; 60(1):30428. https://doi.org/10.3402/fnr.v60.30428 DOI: https://doi.org/10.3402/fnr.v60.30428

Panahi Y, Ahmadi Y, Teymouri M, Johnston TP, Sahebkar A. Curcumin as a potential candidate for treating hyperlipidemia: A review of cellular and metabolic mechanisms. J Cell Physiol. 2018; 233(1):141-52. https://doi.org/10.1002/jcp.25756 DOI: https://doi.org/10.1002/jcp.25756

Khan N, Mukhtar H. Tea polyphenols for health promotion. Life Sci. 2007; 81:519–3. https://doi. org/10.1016/j.lfs.2007.06.011 DOI: https://doi.org/10.1016/j.lfs.2007.06.011

Sen AK, Sen DB, Zanwar AS, Balaraman R, Shah U, Maheshwari RA. Catechins and theaflavins: An overview on therapeutic applications. J Nat Rem. 2022; 3:330-46. https://doi.org/10.18311/jnr/2022/30181 DOI: https://doi.org/10.18311/jnr/2022/30181

Sen AK, Sen DB, Maheshwari RA. Extraction, isolation, and quantitative determination of flavonoids by HPLC. In Herbal Medicine in India, Singapore: Springer; 2020. p. 303-36. https://doi.org/10.1007/978-981-13-7248-3_21 DOI: https://doi.org/10.1007/978-981-13-7248-3_21

Zheng XX, Xu YL, Li SH, Liu XX, Hui R, Huang XH. Green tea intake lowers fasting serum total and LDL cholesterol in adults: a meta-analysis of 14 randomized controlled trials. Am J Clin Nutr. 2011; 94(2):601-10. https://doi.org/10.3945/ajcn.110.010926 DOI: https://doi.org/10.3945/ajcn.110.010926

Yuan F, Dong H, Fang K, Gong J, Lu F. Effects of green tea on lipid metabolism in overweight or obese people: A metaanalysis of randomized controlled trials. Molecular Nutr Food Res. 2018; 62(1):1601122. https://doi.org/10.1002/mnfr.201601122 DOI: https://doi.org/10.1002/mnfr.201601122

Chen YK, Cheung C, Reuhl KR, Liu AB, Lee MJ, Lu YP, et al. Effects of green tea polyphenol (−)-epigallocatechin-3-gallate on newly developed high-fat/Western-style diet-induced obesity and metabolic syndrome in mice. J Agric Food Chem. 2011; 59(21):11862-71. https://doi.org/10.1021/jf2029016 DOI: https://doi.org/10.1021/jf2029016

Huang HC, Lin JK. Pu-erh tea, green tea, and black tea suppresses hyperlipidemia, hyperleptinemia and fatty acid synthase through activating AMPK in rats fed a high-fructose diet. Food Func. 2012; 3:170–77. https://doi.org/10.1039/C1FO10157A DOI: https://doi.org/10.1039/C1FO10157A

Ding S, Jiang J, Yu P, Zhang G, Zhang G, Liu X. Green tea polyphenol treatment attenuates atherosclerosis in high-fat diet-fed apolipoprotein E-knockout mice via alleviating dyslipidemia and up-regulating autophagy. PloS One. 2017; 12(8). https://doi.org/10.1371/journal.pone.0181666 DOI: https://doi.org/10.1371/journal.pone.0181666

Suzuki-Sugihara N, Kishimoto Y, Saita E, Taguchi C, Kobayashi M, Ichitani M, et al. Green tea catechins prevent low-density lipoprotein oxidation via their accumulation in low-density lipoprotein particles in humans. Nutr Res. 2016; 36(1):16-23. https://doi.org/10.1016/j.nutres.2015.10.012 DOI: https://doi.org/10.1016/j.nutres.2015.10.012

Nguyen T, Karl M, Santini A. Red yeast rice. Foods. 2017; 6:19. https://doi.org/10.3390/foods6030019 DOI: https://doi.org/10.3390/foods6030019

Patel S. Functional food Red Yeast Rice (RYR) for metabolic syndrome amelioration: A review on pros and cons. World J Microbio Biotechnol. 2016; 32:87. https://doi.org/10.1007/s11274-016-2035-2 DOI: https://doi.org/10.1007/s11274-016-2035-2

Burke FM. Red yeast rice for the treatment of dyslipidemia. Currt Atherosclerosis Rep. 2015; 17(4):495. https://doi.org/10.1007/s11883-015-0495-8 DOI: https://doi.org/10.1007/s11883-015-0495-8

Sirtori CR. The pharmacology of statins. Pharmacol Res. 2014; 88:3-11. https://doi.org/10.1016/j.phrs.2014.03.002 DOI: https://doi.org/10.1016/j.phrs.2014.03.002

Liu J, Zhang J, Shi Y, Grimsgaard S, Alraek T, Fønnebø V. Chinese red yeast rice (Monascus purpureus) for primary hyperlipidemia: A meta-analysis of randomized controlled trials. Chin Med. 2006; 1(1):1-3. https://doi.org/10.1186/1749-8546-1-4 DOI: https://doi.org/10.1186/1749-8546-1-4

Mazza A, Lenti S, Schiavon L, Di Giacomo E, Tomasi M, Manunta R, et al. Effect of Monacolin K and COQ10 supplementation in hypertensive and hypercholesterolemic subjects with metabolic syndrome. Biomed Pharmacother. 2018; 105:992-6. https://doi. org/10.1016/j.biopha.2018.06.076 DOI: https://doi.org/10.1016/j.biopha.2018.06.076

Heinz T, Schuchardt JP, Möller K, Hadji P, Hahn A. Low daily dose of 3 mg monacolin K from RYR reduces the concentration of LDL-C in a randomized, placebo-controlled intervention. Nutr Res. 2016; 36(10):1162-70. https://doi.org/10.1016/j.nutres.2016.07.005 DOI: https://doi.org/10.1016/j.nutres.2016.07.005

Domenech M, Casas R, Ruiz-León AM, Sobrino J, Ros E, Estruch R. Effects of a novel nutraceutical combination (Aquilea Colesterol®) on the lipid profile and inflammatory biomarkers: A randomized control trial. Nutrients. 2019; 11(5):949. https://doi.org/10.3390/nu11050949 DOI: https://doi.org/10.3390/nu11050949

Sola R, Valls RM, Puzo J, Calabuig JR, Brea A, Pedret A, et al. Effects of poly-bioactive compounds on lipid profile and body weight in a moderately hypercholesterolemic population with low cardiovascular disease risk: A multicenter randomized trial. PLoS One. 2014; 9(8). https://doi.org/10.1371/journal.pone.0101978 DOI: https://doi.org/10.1371/journal.pone.0101978

Fogacci F, Banach M, Mikhailidis DP, Bruckert E, Toth PP, Watts GF, et al. Safety of red yeast rice supplementation: A systematic review and meta-analysis of randomized controlled trials. Pharmacol Res. 2019; 143:1-6. https://doi.org/10.1016/j.phrs.2019.02.028 DOI: https://doi.org/10.1016/j.phrs.2019.02.028

Ghaedi E, Moradi S, Aslani Z, Kord-Varkaneh H, Miraghajani M, Mohammadi H. Effects of grape products on blood lipids: A systematic review and dose–response meta-analysis of randomized controlled trials. Food Func. 2019; 10(10):6399-416. https://doi.org/10.1039/C9FO01248F DOI: https://doi.org/10.1039/C9FO01248F

Asbaghi O, Nazarian B, Reiner Ž, Amirani E, Kolahdooz F, Chamani M, et al. The effects of grape seed extract on glycemic control, serum lipoproteins, inflammation, and body weight: A systematic review and meta‐analysis of randomized controlled trials. Phytother Res. 2020; 34(2):239-53. https://doi.org/10.1002/ptr.6518 DOI: https://doi.org/10.1002/ptr.6518

Nakamura Y, Tonogai Y. Effects of grape seed polyphenols on serum and hepatic lipid contents and fecal steroid excretion in normal and hypercholesterolemic rats. J Health Sci. 2002; 48:570-8. https://doi.org/10.1248/jhs.48.570 DOI: https://doi.org/10.1248/jhs.48.570

Pérez-Jiménez J, Saura-Calixto F. Grape products and cardiovascular disease risk factors. Nutr Res Rev. 2008; 21:158-73. https://doi.org/10.1017/S0954422408125124 DOI: https://doi.org/10.1017/S0954422408125124

Colica C, Milanović M, Milić N, Aiello V, De Lorenzo A, Abenavoli L. A systematic review on natural antioxidant properties of resveratrol. Nat Prod Commun. 2018; 13(9):1195-1203. DOI: https://doi.org/10.1177/1934578X1801300923

Rameshrad M, Razavi BM, Imenshahidi M, Hosseinzadeh H. Vitis vinifera (grape) seed extract and resveratrol alleviate bisphenol‐A‐induced metabolic syndrome: Biochemical and molecular evidences. Phytother Res. 2019; 33(3):832-44. https://doi.org/10.1002/ptr.6276 DOI: https://doi.org/10.1002/ptr.6276

Razavi SM, Gholamin S, Eskandari A, Mohsenian N, Ghorbanihaghjo A, Delazar A, et al. Red grape seed extract improves lipid profiles and decreases oxidized low-density lipoprotein in patients with mild hyperlipidemia. J Med Food. 2013; 16(3):255-8. https://doi.org/10.1089/jmf.2012.2408 DOI: https://doi.org/10.1089/jmf.2012.2408

Cicero AF, Fogacci F, Bove M, Veronesi M, Rizzo M, Giovannini M, et al. Short-term effects of a combined nutraceutical on lipid level, fatty liver biomarkers, hemodynamic parameters, and estimated cardiovascular disease risk: A double-blind, placebo-controlled randomized clinical trial. Adv Ther. 2017; 34(8):1966- 75. https://doi.org/10.1007/s12325-017-0580-1 DOI: https://doi.org/10.1007/s12325-017-0580-1

D’Addato S, Scandiani L, Mombelli G, Focanti F, Pelacchi F, Salvatori E, et al. Effect of a food supplement containing berberine, monacolin K, hydroxytyrosol and coenzyme Q10 on lipid levels: A randomized, double-blind, placebo controlled study. Drug Des Devel Ther. 2017; 11:1585. https://doi.org/10.2147/DDDT.S128623 DOI: https://doi.org/10.2147/DDDT.S128623

Muhindo CT, Ahn SA, Rousseau MF, Dierckxsens Y, Hermans MP. Efficacy and safety of a combination of red yeast rice and olive extract in hypercholesterolemic patients with and without statin-associated myalgia. Complement Ther Med. 2017; 35:140-4. https://doi.org/10.1016/j.ctim.2017.10.014 DOI: https://doi.org/10.1016/j.ctim.2017.10.014

Lockyer S, Rowland I, Spencer JP, Yaqoob P, Stonehouse W. Impact of phenolic-rich olive leaf extract on blood pressure, plasma lipids and inflammatory markers: A randomised controlled trial. Eur J Nutr. 2017; 56(4):1421-32. https://doi.org/10.1007/s00394-016-1188-y DOI: https://doi.org/10.1007/s00394-016-1188-y

De Bock M, Thorstensen EB, Derraik JG, Henderson HV, Hofman PL, Cutfield WS. Human absorption and metabolism of oleuropein and hydroxytyrosol ingested as olive (O lea europaea L.) leaf extract. Mol Nutr Food Res. 2013; 57(11):2079-85. https://doi.org/10.1002/mnfr.201200795 DOI: https://doi.org/10.1002/mnfr.201200795

Hassen I, Casabianca H, Hosni K. Biological activities of the natural antioxidant oleuropein: Exceeding the expectation–A mini-review. J Funct Foods. 2015; 18:926-40. https://doi.org/10.1016/j.jff.2014.09.001 DOI: https://doi.org/10.1016/j.jff.2014.09.001

Omar SH. Oleuropein in olive and its pharmacological effects. Sci Pharm. 2010; 78:133-54. https://doi.org/10.3797/scipharm.0912-18 DOI: https://doi.org/10.3797/scipharm.0912-18

Mahmoudi A, Hadrich F, Feki I, Ghorbel H, Bouallagui Z, Marrekchi R, et al. Oleuropein and hydroxytyrosol rich extracts from olive leaves attenuate liver injury and lipid metabolism disturbance in bisphenol A-treated rats. Food Func. 2018; 9(6):3220- 34. https://doi.org/10.1039/C8FO00248G DOI: https://doi.org/10.1039/C8FO00248G

Jemai H, Bouaziz M, Fki I, El Feki A, Sayadi S. Hypolipidimic and antioxidant activities of oleuropein and its hydrolysis derivative-rich extracts from Chemlali olive leaves. Chem Biol Interact. 2008; 176(2-3):88-98. https://doi.org/10.1016/j.cbi.2008.08.014 DOI: https://doi.org/10.1016/j.cbi.2008.08.014

Duric L, Medio-stojanoska M, Milosevic N. Herbs for treatment of hyperlipidemia: What is the evidence? Curr Top Nutraceutical Res. 2021; 19:1-11. https:// doi.org/10.37290/ctnr2641-452X.19:146-156 DOI: https://doi.org/10.37290/ctnr2641-452X.19:146-156

Dev S. Ethnotherapeutics and modern drug development. The potential of Ayurveda. Curr Sci. 1997; 73:909-28.

Satyavati GV. Gum guggul (Commiphora mukul)-The success story of an ancient insight leading to a modern discovery. Indian J Med Res. 1988; 87:327-35.

Singh K, Chander R, Kapoor NK. Stimulation of low density lipoprotein receptor activity in liver membrane of guggulsterone treated rats. Pharmacol Res. 1990; 22:37-44. https://doi.org/10.1016/1043-6618(90)90741-U DOI: https://doi.org/10.1016/1043-6618(90)90741-U

Deng R. Therapeutic effects of guggul and its constituent guggulsterone: Cardiovascular benefits. Cardiovasc Drug Rev. 2007; 25:375-90. https://doi.org/10.1111/j.1527-3466.2007.00023.x1. DOI: https://doi.org/10.1111/j.1527-3466.2007.00023.x

Most read articles by the same author(s)

1 2 > >>