A Review on the Possible Therapeutic Intervention by Herbal Remedies on Antipsychotic Drugs Induced Metabolic Disorder

Jump To References Section

Authors

  • Sumandeep Nursing College, Sumandeep Vidyapeeth Deemed to be University, Pipariya, Vadodara - 391760 ,IN
  • Department of General Medicine, S.B.K.S. MI & RC, Sumandeep Vidyapeeth Deemed to be University, Pipariya, Vadodara - 391760 ,IN
  • Department of Pharmacy, Sumandeep Vidyapeeth Deemed to be University, Pipariya, Vadodara - 391760 ,IN

DOI:

https://doi.org/10.18311/jnr/2022/28665

Keywords:

Antipsychotic Drugs, Disorder, Herbal Drugs, Metabolism
Use of herbal in psychiatric disorder

Abstract

This review is the compilation of some of the natural products which are effective in treating diabetes, lipid abnormalities and cardiovascular diseases. We also discussed metabolic disorder associated with antipsychotic drugs. Currently, there are no equivocal evidence to demonstrate the effectiveness of herbal drugs in treating metabolic disorders induced by antipsychotic drugs. Therefore, there is a need of extensive research work to be carried out to explore the possibilities of therapeutic intervention of herbal drugs in antipsychotics induced metabolic disorders.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Downloads

Published

2022-02-14

How to Cite

Suresh, V., Lakhani, J. D., & Balaraman, R. (2022). A Review on the Possible Therapeutic Intervention by Herbal Remedies on Antipsychotic Drugs Induced Metabolic Disorder. Journal of Natural Remedies, 22(1), 13–22. https://doi.org/10.18311/jnr/2022/28665

Issue

Section

Short Review
Received 2021-09-20
Accepted 2021-10-12
Published 2022-02-14

 

References

Expert panel on detection, evaluation, and treatment of high blood cholesterol in adults. summary of the second report of the National Cholesterol Education Program (NCEP) Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults (Adult Treatment Panel II). JAMA.1993; 269:3015–23. https://doi.org/10.1001/jama.1993.03500230097036

Balaraman R, Parmar G, Maheshwari RA, Anuj SD. A review on the biological effects of some natural products. J. Nat. Remedies. 2020; 20(3):117–27. https://doi.org/10.18311/jnr/2020/25581

Huang TH, Kota BP, Razmovski V, Roufogalis BD. Herbalor natural medicines as modulators of peroxisome proliferator activated receptors and related nuclear receptors for therapy of metabolic syndrome. Basic Clin. Pharmacol. Toxicol. 2005; 96(1):3–14. https://doi.org/10.1111/j.1742-7843.2005. pto960102.x. PMid:15667590

Razavi BM, Hosseinzadeh H. A review of the effects of Nigella sativa L. and its constituent, thymoquinone, in metabolic syndrome. J. Endocrinol. Invest. 2014; 37(11):1031–40. https://doi.org/10.1007/s40618-014-0150- 1. PMid:25125023

Vogler BK, Ernst E. Aloe vera: A systematic review of its clinical effectiveness. Br. J. Gen. Pract. 1999; 49(447):823–8.

Pothuraju R, Sharma RK, Onteru SK, Singh S, Hussain SA. Hypoglycemic and hypolipidemic effects of Aloe vera extract preparations: A review. Phytother Res. 2016; 30(2):200–7. https://doi.org/10.1002/ptr.5532. PMid:26666199

Saleem R, Faizi S, Siddiqui BS, Ahmed M, Hussain SA, Qazi A, Hasnain SN. Hypotensive effect of chemical constituents from Aloe barbadensis. Planta Medica. 2001; 67(8):757–60. https://doi.org/10.1055/s-2001-18348. PMid:11731923

Misawa E, Tanaka M, Nabeshima K, Nomaguchi K, Yamada M, Toida T, et al. Administration of dried Aloe vera gel powder reduced body fat mass in Diet?induced Obesity (DIO) rats. J. Nutr. Sci. Vitaminol. 2012; 58(3):195–201. https://doi.org/10.3177/jnsv.58.195. PMid:22878390

Pugh N, Ross SA, El Sohly MA, Pasco DS. Characterization of aloeride, a new high molecular weight polysaccharide from Aloe vera with potent immunostimulatory activity. J. Agric. Food Chem. 2001; 49(2):1030–4. https://doi.org/10.1021/jf001036d. PMid:11262067

Sharma P, Kharkwal A, Kharkwal H, Abdin M, Varma A. A review on pharmacological properties of Aloe vera. Int. J. Pharm. Sci. Rev. Res. 2014; 29(2):31–7.

Parihar MS, Chaudhary M, Shetty R, Hemnani T. Susceptibility of hippocampus and cerebral cortex to oxidative damage in streptozotocin treated mice: Prevention by extracts of Withania somnifera and Aloe vera. J. Clin. Neurosci. 2004; 11(4):397–402. https://doi.org/10.1016/j.jocn.2003.09.008. PMid:15080956

Yagi A, Hegazy S, Kabbash A, Wahab EAE. Possible hypoglycemic effect of Aloe vera L. high molecular weight fractions on type 2 diabetic patients. Saudi Pharm. J. 2009; 17(3):209–15. https://doi.org/10.1016/j.jsps.2009.08.007. PMid:23964163. PMCid:PMC3731013

Kim K, Chung MH, Park S, Cha J, Baek JH, Lee SY, et al. ER Stress attenuation by Aloe?derived polysaccharides in the protection of pancreatic beta?cells from free fatty acid?induced lipotoxicity. Biochem. Biophys. Res. Commun. 2018; 500(3):797–803. https://doi.org/10.1016/j.bbrc.2018.04.162. PMid:29684344

Misawa E, Tanaka M, Nomaguchi K, Yamada M, Toida T, Takase M, Kawada T. Administration of phytosterols isolated from Aloe vera gel reduce visceral fat mass and improve hyperglycemia in Zucker Diabetic Fatty (ZDF) rats. Obes. Res. Clin. Pract. 2008; 2(4):239–45. https://doi.org/10.1016/j.orcp.2008.06.002. PMid:24351850

Saito M, Tanaka M, Misawa E, Yamada M, Yamauchi K, Iwatsuki. Aloe vera gel extract attenuates ethanol?induced hepatic lipid accumulation by suppressing the expression of lipogenic genes in mice. Biosci. Biotechnol. Biochem. 2012; 76(11):2049–54. https://doi.org/10.1271/bbb.120393. PMid:23132591

Alinejad?Mofrad S, Foadoddini M, Saadatjoo SA, Shayesteh M. Improvement of glucose and lipid profile status with Aloe vera in prediabetic subjects: A randomized controlled? trial. J. Diabetes Metab. Disord. 2015; 14:22. https://doi.org/10.1186/s40200-015-0137-2. PMid:25883909. PMCid:PMC4399423

Yongchaiyudha S, Rungpitarangsi V, Bunyapraphatsara N, Chokechaijaroenporn O. Antidiabetic activity of Aloe vera L. juice. I. Clinical trial in new cases of diabetes mellitus. Phytomedicine. 1996; 3(3):241–3. https://doi.org/10.1016/S0944-7113(96)80060-2

Choudhary M, Kochhar A, Sangha J. Hypoglycemic and hypolipidemic effect of Aloe vera L. in non-insulin dependent diabetics. J. Food Sci. Technol. 2014; 51(1):90–6. https://doi. org/10.1007/s13197-011-0459-0. PMid:24426052. PMCid: PMC3857397

Choi HC, Kim SJ, Son KY, Oh BJ, Cho BL. Metabolic effects of aloe vera gel complex in obese prediabetes and early nontreated diabetic patients: Randomized controlled trial. Nutrition (Burbank, Los Angeles County, Calif). 2013; 29(9):1110–14. https://doi.org/10.1016/j.nut.2013.02.015. PMid:23735317

Crawford P. Effectiveness of cinnamon for lowering hemoglobin A1c in patients with type 2 diabetes: A randomized, controlled trial. J. Am. Board Fam. Med. 2009; 22(5):507– 12. https://doi.org/10.3122/jabfm.2009.05.080093. PMid: 19734396

Khan A, Safdar M, Ali Khan MM, Khattak KN, Anderson RA. Cinnamon improves glucose and lipids of people with type 2 diabetes. Diabetes Care. 2003; 26(12):3215–18. https://doi.org/10.2337/diacare.26.12.3215. PMid:14633804

Anderson RA. Chromium and polyphenols from cinnamon improve insulin sensitivity. Proc. Nutr. Soc. 2008; 67(1):48–53. https://doi.org/10.1017/S0029665108006010. PMid:18234131

Ziegenfuss TN, Hofheins JE, Mendel RW, Landis J, Anderson RA. Effects of a water-soluble cinnamon extract on body composition and features of the metabolic syndrome in pre-diabetic men and women. J. Int. Soc. Sports Nutr. 2006; 3:45–53. https://doi.org/10.1186/1550-2783-3- 2-45. PMid:18500972. PMCid:PMC2129164

Cefalu WT. Inflammation, insulin resistance, and type 2 diabetes: Back to the future? Diabetes. 2009; 58(2):307–8. https://doi.org/10.2337/db08-1656. PMid:19171748. PMCid:PMC2628602

Ribnicky DM, Poulev A, O’Neal J, Wnorowski G, Malek DE, Jager R, et al. Toxicological evaluation of the ethanolic extract of Artemisia dracunculus L. for use as a dietary supplement and in functional foods. Food Chem. Toxicol. 2004; 42(4):585–98. https://doi.org/10.1016/j.fct.2003.11.002. PMid:15019182

Cefalu WT, Ye J, Wang ZQ. Efficacy of dietary supplementation with botanicals on carbohydrate metabolism in humans. Endocr. Metab. Immune. Disord. Drug Targets. 2008; 8:78–81. https://doi.org/10.2174/187153008784534376. PMid:18537692

Cousens G. There is a cure for diabetes: The tree of life 21 day program. California: North Atlantic Books; 2008. p. 191–2.

Wehash FE, Abpo-Ghanema II, Saleh RM. Some physiological effects of Momordica charantia and Trigonella foenum-graecum extracts in diabetic rats as compared with cidophage®. World Acad. Eng. Tech. 2012; 64:1206–14.

Fuangchana A, Sonthisombata P, Seubnukarnb T, Chanouanc R, Chotchaisuwatd P, Sirigulsatiene V, et al. Hypoglycemic effect of bitter melon compared with metformin in diagnosed type 2 diabetes patients. J. Ethnopharmacol. 2011; 134:422–8 https://doi.org/10.1016/j.jep.2010.12.045. PMid:21211558

Ogbonnia SO, Odimegu JI, Enwuru VN. Evaluation of hypoglycemic and hypolipidemic effects of ethanolic extracts of Treculia africana Decne and Bryopyllum pinnatum Lam. and their mixture on streptozotocin (STZ)- induced diabetic rats. Afr. J. Biotech. 2008; 7(15):2535–9.

Lee SY, Eom SH, Kim YK, Park NI, Park SU. Cucurbitanetype triterpenoids in Momordica charantia Linn. J. Med. Plants Res. 2009; 3(13):1264–9.

Tsi C, Chen EC, Tsay H, Huang C. Wild bitter gourd improves metabolic syndrome: A preliminary dietary supplementation trial. Nutr. J. 2012; 11:4. https://doi.org/10.1186/1475-2891-11-4. PMid:22243626. PMCid: PMC3311063

Hasan I, Khatoon S. Effect of Momordica charantia (bitter gourd) tablets in diabetes mellitus: Type 1 and Type 2. Prime Res. Med. (PROM). 2012; 2(2):72–4.

Wehash FE, Abpo-Ghanema II, Saleh RM. Some physiological effects of Momordica charantia and Trigonella foenum-graecum extracts in diabetic rats as compared with cidophage®. World Acad. Eng. Tech 2012; 64:1206–14.

Dans AM, Villarruz MV, Jimeno CA, Anthony M, Javelosab U, Chuaa J, et al. The effect of Momordica charantia capsule preparation on glycemic control in type 2 diabetes mellitus needs further studies. J. Clin. Epidemiol. 2007; 60:554–9. https://doi.org/10.1016/j.jclinepi.2006.07.009. PMid:17493509

Tongia A, Tongia SK, Dave M. Phytochemical determination and extraction of Momordica charantia fruit and its hypoglycemic potentiation of oral hypoglycemic drugs in diabetes mellitus (NIDDM). Indian J. Physiol. Pharmacol. 2004; 48:241–4.

Ahmad N, Hassan MR, Halder H, Bennoor KS. Effect of Momordica charantia (Karolla) extracts on fasting and postprandial serum glucose in NIDDM patients. Bangladesh Med. Res. Council Bull. 1999; 25:11–13.

Grover JK, Gupta SR. Hypoglycemic activity of seeds of Momordica charantia. Eur. J. Pharmacol.1990; 183:1026–7. https://doi.org/10.1016/0014-2999(90)92880-R

Welihinda J, Arvidson G, Gyfle E, Hellman B, Karlsson E. The insulin-releasing activity of the tropical plant Momordica charantia. Acta Biol. Med. Germ. 1982; 41:1229–40.

Akhtar MS. Trial of Momordica charantia Linn (Karela) powder in patients with maturity-onset diabetes. J. Pakistan Med. Assoc. 1982; 32:106–7.

Leatherdale BA, Panesar RK, Singh G, Atkins TW, Bailey CJ, Bignell AH. Improvement in glucose tolerance due to Momordica charantia (karela). Br. Med. J. 1981; 282:1823–4. https://doi.org/10.1136/bmj.282.6279.1823. PMid:6786635. PMCid:PMC1506397

Khanna P, Jain SC, Panagariya A, Dixt VP. Hypoglycaemic activity of polypeptide-p from a plant source. J. Nat. Prod. 1981; 44:648–55. https://doi.org/10.1021/np50018a002. PMid:7334382

Cummings E, Hundal HS, Wackerhage H, Hope M, Belle M, Adeghate E, et al. Momordica charantia fruit juice stimulates glucose and amino acid uptakes in L6 myotubes. Mol. Cell. Biochem. 2004; 261:99–1046. https://doi.org/10.1023/B:MCBI.0000028743.75669.ab. PMid:15362491

Akhtar N, Khan BA, Majid A, Khan S, Mahmood T, Gulfishan, et al. Pharmaceutical and biopharmaceutical evaluation of extracts from different plant parts of indigenous origin for their hypoglycemic responses in rabbits. Acta Pol. Pharm. 2011; 68(6):919–25.

Uebanso T, Arai H, Taketani Y, Fukaya M, Yamamoto H, Mizuno A, et al. Extracts of Momordica charantia supress postprandial hyperglycemia in rats. J. Nutr. Sci. Vitaminol (Tokyo). 2007; 53(6):482–6. https://doi.org/10.3177/jnsv.53.482. PMid:18202535

Jeong J, Lee S, Hue J, Lee K, Nam SY, Yun YW, et al. Effect of bittermelon (Momordica charantia) on antidiabetic activity in C57BL/6J db/db mice. Korean J. Vet. Res. 2008; 48(3):327–36.

Abdollah M, Zuki ABZ, Goh YM, Rezaeizadeh A, Noordin MM. The effects of Momordica charantia on the liver in streptozotoc in induced diabetes in neonatal rats. Afr. J. Biotechnol. 2010; 9(31):5004–12.

Shibib BA, Khan LA, Rahman R. Hypoglycaemic activity enzymes glucose-6-phosphatase and fructose-1,6-bisphosphatase and elevation of both liver and red-cell shunt enzyme glucose-6- phosphate dehydrogenase. Biochem. J. 1993; 292:267–70. https://doi.org/10.1042/bj2920267. PMid:8389127. PMCid:PMC1134299

Singh J, Cumming E, Manoharan G, Kalasz H, Adeghate E. Medicinal chemistry of the anti-diabetic effects of Momordica charantia: Active constituents and modes of actions. Open Med. Chem. J. 2011; 5: 70–7. https://doi.org/10.2174/1874104501105010070. PMid:21966327. PMCid:PMC3174519

Gadang V, Gilbert W, Hettiararchchy N, Horax R, Katwa L, Devareddy L. Dietary bitter melon seed increases peroxisome proliferator-activated receptor-? gene expression in adipose tissue, down-regulates the nuclear factor-?B expression, and alleviates the symptoms associated with metabolic syndrome. J. Med. Food. 2011; 14: 86–93. https://doi.org/10.1089/jmf.2010.0010. PMid:21128828

Kim K, Kim HY. Bitter melon (Momordica charantia) extract suppresses cytokine induced activation of MAPK and NF-κB in pancreatic β-cells. Food Sci. Biotechnol. 2011; 20(2):531–5. https://doi.org/10.1007/s10068-011-0074-x

Srinivasan K. Fenugreek (Trigonella foenum-graecum): A review of health beneficial physiological effects. Food. Rev. Intl. 2006; 22(2):203–24. https://doi. org/10.1080/87559120600586315

Gopalpura PB, Jayanthi C, Dubey S. Effect of Trigonella foenum- graecum seeds on the glycemic index of food: A clinical evaluation. Int. J. Diab. Dev. Countries. 2009; 27(2):41–5. https://doi.org/10.4103/0973-3930.37033

Kassaian N, Azadbakht L, Forghani B, Amini M. Effect of fenugreek seeds on blood glucose and lipid profiles in type 2 diabetic patients. Int. J. Vitam. Nutr. Res. 2009; 79(1):34–9. https://doi.org/10.1024/0300-9831.79.1.34. PMid:19839001

Gopalpura PB, Jayanthi C, Dubey S. Effect of Trigonella foenum- graecum seeds on the glycemic index of food: A clinical evaluation. Int. J. Diab. Dev. Countries. 2009; 27(2):41–5. https://doi.org/10.4103/0973-3930.37033

Yousefi E. Fenugreek: A therapeutic complement for patients with borderline hyperlipidemia: A randomised, double-blind, placebo-controlled, clinical trial [Internet]. Adv. Integr. Med. 2021 [cited 17 September 2021]. Available from: https://www.researchgate.net/publication/ 312664275_Fenugreek_A_therapeutic_complement_ for_patients_with_borderline_hyperlipidemia_A_randomised_ double-blind_placebo-controlled_clinical_trial

Johnson SA, Figueroa A, Navaei N, Wong A, Kalfon R, Ormsbee LT, et al. Daily blueberry consumption improves blood pressure and arterial stiffness in postmenopausal women with pre- and stage 1-hypertension: A randomized, double-blind, placebo-controlled clinical trial. J. Acad. Nutr. Diet. 2015; 115:369–77. https://doi.org/10.1016/j.jand.2014.11.001. PMid:25578927

Stull AJ, Cash KC, Champagne CM, Gupta AK, Boston R, Beyl RA, et al. Blueberries improve endothelial function, but not blood pressure, in adults with metabolic syndrome: A randomized, double-blind, placebo- controlled clinical trial. Nutrients. 2015; 7:4107–23. https://doi.org/10.3390/nu7064107. PMid:26024297. PMCid:PMC4488775

Riso P, Klimis-Zacas D, del Bo’ C, Martini D, Campolo J, Vendrame S, et al. Effect of a wild blueberry (Vaccinium angustifolium) drink intervention on markers of oxidative stress, inflammation and endothelial function in humans with cardiovascular risk factors. Eur. J. Nutr. 2013; 52:949–61. https://doi.org/10.1007/s00394-012-0402-9. PMid:22733001

Stull AJ, Cash KC, Johnson WD, Champagne CM, Cefalu WT. Bioactives in blueberries improve insulin sensitivity in obese, insulin-resistant men and women. J. Nutr. 2010; 140:1764–8. https://doi.org/10.3945/jn.110.125336. PMid:20724487. PMCid:PMC3139238

Basu A, Du M, Leyva MJ, Sanchez K, Betts NM, Wu M, et al. Blueberries decrease cardiovascular risk factors in obese men and women with metabolic syndrome. J. Nutr. 2010; 140:1582–7. https://doi.org/10.3945/jn.110.124701. PMid:20660279. PMCid:PMC2924596

Karlsen A, Paur I, Bøhn SK, Sakhi AK, Borge GI, Serafini M, et al. Bilberry juice modulates plasma concentration of NF-kB related inflammatory markers in subjects at increased risk of CVD. Eur. J. Nutr. 2010; 49:345–55. https://doi.org/10.1007/s00394-010-0092-0. PMid:20119859

Peng N, Clark JT, Prasain J, Kim H, White CR, Wyss JM. Antihypertensive and cognitive effects of grape polyphenols in estrogen-depleted, female, spontaneously hypertensive rats. Am. J. Physiol. Regul Integr. Comp. Physiol. 2005; 289(3):R771–75. https://doi.org/10.1152/ajpregu.00147.2005. PMid:16105821

Sivaprakasapillai B, Edirisinghe I, Randolph J, Steinberg F, Kappagoda T. Effect of grape seed extract on blood pressure in subjects with the metabolic syndrome. Metabolism. 2009; 58(12):1743–6. https://doi.org/10.1016/j.metabol.2009.05.030 PMid:19608210

Aldini G, Carini M, Piccoli A, Rossoni G, Facino RM. Procyanidins from grape seeds protect endothelial cells from peroxynitrite damage and enhance endotheliumdependent relaxation in human artery: New evidences for cardioprotection. Life Sci. 2003; 73(22):2883–98. https://doi.org/10.1016/S0024-3205(03)00697-0

Quesada H, del Bas JM, Pajuelo D, Díaz S, Fernandez-Larrea J, Pinent M, et al. Grape seed proanthocyanidins correct dyslipidemia associated with a high-fat diet in rats and repress genes controlling lipogenesis and VLDL assembling in liver. Int J Obes (Lond). 2009; 33(9):1007–12. https://doi.org/10.1038/ijo.2009.136. PMid:19581912

Sivaprakasapillai B, Edirisinghe I, Randolph J, Steinberg F, Kappagoda T. Effect of grape seed extract on blood pressure in subjects with the metabolic syndrome. Metabolism. 2009; 58:1743–6. https://doi.org/10.1016/j.metabol.2009.05.030. PMid:19608210

Sano A, Uchida R, Saito M, Shioya N, Komori Y, Tho, Y, et al. Beneficial effects of grape seed extract on malondialdehyde modified, LDL. J. Nutr. Sci. Vitaminol. 2007; 53:174–82. https://doi.org/10.3177/jnsv.53.174. PMid:17616006

Wilson PW, Anderson KM, Castelli WP. Twelve-year incidence of coronary heart disease in middle-aged adults during the era of hypertensive therapy: The Framingham offspring study. Am. J. Med. 1991; 90:11–16. https://doi.org/10.1016/0002-9343(91)90500-W

Bopanna KN, Balaraman R, Kannan J, Gadgil S. Antidiabetic and antihyperlipidemic effect of neem seed kernel powder on alloxan induced diabetic rabbits. Indian J. Pharmacol. 1997; 29(3):162–7.

Rojo LE, Gaspar PA, Silva H, Risco L, Arena P, Cubillos- Robles K, et al. Metabolic syndrome and obesity among users of second generation antipsychotics: A global challenge for modern psychopharmacology. Pharmacol. Res. 2015; 101:74–85. https://doi.org/10.1016/j.phrs.2015.07.022. PMid:26218604

Albaugh VL, et al. Hormonal and metabolic effects of olanzapine and clozapine related to body weight in rodents. Obesity (Silver Spring). 2006; 14:36–51. https://doi.org/10.1038/oby.2006.6. PMid:16493121. PMCid:PMC2761763

Kaur G, Kulkarni SK. Studies on modulation of feeding behavior by atypical antipsychotics in female mice. Prog. Neuropsycho pharmacol. Biol. Psychiatry. 2002; 26:277–85. https://doi.org/10.1016/S0278-5846(01)00266-4

Vancampfort D, Correll CU, Galling B, Probst M, De Hert M, Ward PB, et al. Diabetes mellitus in people with schizophrenia, bipolar disorder and major depressive disorder: A systematic review and large scale meta-analysis. World Psychiatry. 2016; 15(2):166–74. https://doi.org/10.1002/wps.20309. PMid:27265707. PMCid:PMC4911762

Cohen D, Batstra MR, Gispen-de Wied CC. Immunological characteristics of diabetes in schizophrenia. Diabetologia. 2005; 48(9):1941–2. https://doi.org/10.1007/s00125-005-1879-z. PMid:16052326

Stahl S, Mignon L, Meyer J. Which comes first: A typical antipsychotic treatment or cardiometabolic risk? Acta Psychiatr. Scand. 2009; 119:171–9. https://doi.org/10.1111/j.1600-0447.2008.01334.x. PMid:19178394

Kabinoff GS, Toalson PA, Healey KM, McGuire HC, Hay DP. Metabolic issues with atypical antipsychotics in primary care: dispelling the myths. Prim. Care Companion. J. Clin. Psychiatry. 2003; 5–14. https://doi.org/10.4088/PCC.v05n0103. PMid:15156241. PMCid:PMC353028

Xiang SY, Zhao J, Lu Y, Chen RM, Wang Y, Chen Y, et al. Network pharmacology-based identification for therapeutic mechanism of Ling-Gui-Zhu-Gan decoction in the metabolic syndrome induced by antipsychotic drugs. Comput. Biol. Med. 2019 Jul; 110:1–7. https://doi.org/10.1016/j.compbiomed.2019.05.007. PMid:31085379

Suresh V, Lakhani JD, Shah R, Kataria L, Balaraman R. The prevalence of metabolic syndrome of patients on treatment with haloperidol and risperidone or olanzapine. J. Pharm. Res. Int. 2021; 33(44A):320–7. https://doi.org/10.9734/jpri/2021/v33i44A32618

Sareddy P, Pandya HB, Sumple RS, Lakhani JD. Diabetic CAD versus non diabetic CAD: A comparative study of clinical features, risk factors and angiographic profile. Int. J. Adv. Med. 2021; 8(7):927–33. https://doi.org/10.18203/2349-3933.ijam20212403

Pandya H, Lakhani JD, Patel N. Obesity is becoming synonym for diabetes in rural areas of India also an alarming situation, Int. J. Biol. Med. Res. 2011; 2(2):556–60

Most read articles by the same author(s)